【題目】如圖,四棱錐中,平面,四邊形是直角梯形,其中,. ,.
(1)求異面直線與所成角的大小;
(2)若平面內(nèi)有一經(jīng)過點(diǎn)的曲線,該曲線上的任一動點(diǎn)都滿足與所成角的大小恰等于與所成角.試判斷曲線的形狀并說明理由;
(3)在平面內(nèi),設(shè)點(diǎn)是(2)題中的曲線在直角梯形內(nèi)部(包括邊界)的一段曲線上的動點(diǎn),其中為曲線和的交點(diǎn).以為圓心,為半徑的圓分別與梯形的邊、交于、兩點(diǎn).當(dāng)點(diǎn)在曲線段上運(yùn)動時(shí),試求圓半徑的范圍及的范圍.
【答案】(1);(2)雙曲線;(3),.
【解析】
試題分析:(1)借助題設(shè)條件建立空間直角坐標(biāo)系運(yùn)用向量的數(shù)量積公式求解;(2)在空間坐標(biāo)系中借助題設(shè)建立方程探求;(3)依據(jù)題設(shè)建立函數(shù)關(guān)系,運(yùn)用二次函數(shù)的知識及不等式的性質(zhì)等知識分析探求.
試題解析:
(1)如圖,以為原點(diǎn),直線為軸、直線為軸、直線為軸,建立空間直角坐標(biāo)系.于是有、,則有,又
則異面直線與所成角滿足,
所以,異面直線與所成角的大小為.
(2)如圖,以為原點(diǎn),直線為軸、直線為軸、直線為軸,建立空間直角坐標(biāo)系.設(shè)點(diǎn),點(diǎn)、點(diǎn)、點(diǎn),
則,,
則,
,
化簡整理得到,
則曲線是平面內(nèi)的雙曲線.
(3)解:在如圖所示的的坐標(biāo)系中,因?yàn)?/span>、、,設(shè).則有,故的方程為,
代入雙曲線:的方程可得,,其中.
因?yàn)橹本與雙曲線交于點(diǎn),故.進(jìn)而可得,即.故雙曲線在直角梯形內(nèi)部(包括邊界)的區(qū)域滿足,.又設(shè)為雙曲線上的動點(diǎn),.
所以,
因?yàn)?/span>,所以當(dāng)時(shí),;
當(dāng)時(shí),.
而要使圓與、都有交點(diǎn),則.
故滿足題意的圓的半徑取值范圍是.
因?yàn)?/span>,所以體積為.故問題可以轉(zhuǎn)化為研究的面積.又因?yàn)?/span>為直角,所以必為等腰直角三角形.
由前述,設(shè),則,
故其面積,所以.
于是,.
(當(dāng)點(diǎn)運(yùn)動到與點(diǎn)重合時(shí),體積取得最大值;當(dāng)點(diǎn)運(yùn)動到橫坐標(biāo)時(shí),即長度最小時(shí),體積取得最小值)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: ,焦點(diǎn), 為坐標(biāo)原點(diǎn),直線(不垂直軸)過點(diǎn)且與拋物線交于兩點(diǎn),直線與的斜率之積為.
(1)求拋物線的方程;
(2)若為線段的中點(diǎn),射線交拋物線于點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班50名學(xué)生在一次數(shù)學(xué)測試中,成績?nèi)拷橛?0與100之間,將測試結(jié)果按如下方式分成五組:第一組[50,60),第二組[60,70),…,第五組[90,100].如圖所示是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)若成績大于或等于60且小于80,認(rèn)為合格,求該班在這次數(shù)學(xué)測試中成績合格的人數(shù);
(Ⅱ)從測試成績在[50,60)∪[90,100]內(nèi)的所有學(xué)生中隨機(jī)抽取兩名同學(xué),設(shè)其測試成績分別為m、n,求事件“|m﹣n|>10”概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ) 當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),的圖象恒在的圖象上方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),當(dāng)時(shí),(其中,是自然對數(shù)的底數(shù),=2.71828…).
(Ⅰ)求的值;
(Ⅱ)若時(shí),方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2009年推出一種新型家用轎車,購買時(shí)費(fèi)用為萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共萬元,汽車的維修費(fèi)為:第一年無維修費(fèi)用,第二年為萬元,從第三年起,每年的維修費(fèi)均比上一年增加萬元.
(1)設(shè)該輛轎車使用年的總費(fèi)用(包括購買費(fèi)用、保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi))為,求的表達(dá)式;
(2)這種汽車使用多少年報(bào)廢最合算(即該車使用多少年,年平均費(fèi)用最少)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),設(shè)的兩個(gè)極值點(diǎn)恰為的零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)上的偶函數(shù),其圖象關(guān)于點(diǎn)對稱,且在區(qū)間上是單調(diào)函數(shù),則的值是( )
A. B. C. 或 D. 無法確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com