【題目】在平面直角坐標系中,已知橢圓E:()過點,其心率等于.
(1)求橢圓E的標準方程;
(2)若A,B分別是橢圓E的左,右頂點,動點M滿足,且橢圓E于點P.
①求證:為定值:
②設與以為直徑的圓的另一交點為Q,求證:直線經(jīng)過定點.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上的最小值是,求的值;
(3)設是函數(shù)圖象上任意不同的兩點,線段的中點為,直線的斜率為,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研小組對冬季晝夜溫差大小與某反季節(jié)作物種子發(fā)芽多少之間的關系進行分析,分別記錄了每天晝夜溫差和每100顆種子的發(fā)芽數(shù),其中5天的數(shù)據(jù)如下,該小組的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,再用方程對其余的2組數(shù)據(jù)進行檢驗.
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
溫度(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 26 | 32 | 26 | 16 |
(1)求余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是第2、3、4天的數(shù)據(jù),求關于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與2組檢驗數(shù)據(jù)的誤差均不超過1顆,則認為得到的線性回歸方程是可靠的,請問(2)中所得的線性回歸方程是否可靠?
(參考公式;線性回歸方程中系數(shù)計算公式:,,其中、表示樣本的平均值)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當時,證明:;
(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)為偶函數(shù),求實數(shù)的值;
(2)若,,且函數(shù)在上是單調(diào)函數(shù),求實數(shù)的值;
(3)若,若當時,總有,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出以下四個結論:
①過點,在兩軸上的截距相等的直線方程是;
②若是等差數(shù)列的前n項和,則;
③在中,若,則是等腰三角形;
④已知,,且,則的最大值是2.
其中正確的結論是________(寫出所有正確結論的番號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某景區(qū)的各景點從2009年取消門票實行免費開放后,旅游的人數(shù)不斷地增加,不僅帶動了該市淡季的旅游,而且優(yōu)化了旅游產(chǎn)業(yè)的結構,促進了該市旅游向“觀光、休閑、會展”三輪驅動的理想結構快速轉變.下表是從2009年至2018年,該景點的旅游人數(shù)(萬人)與年份的數(shù)據(jù):
第年 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人數(shù)(萬人) | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
該景點為了預測2021年的旅游人數(shù),建立了與的兩個回歸模型:
模型①:由最小二乘法公式求得與的線性回歸方程;
模型②:由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近.
(1)根據(jù)表中數(shù)據(jù),求模型②的回歸方程.(精確到個位,精確到0.01).
(2)根據(jù)下列表中的數(shù)據(jù),比較兩種模型的相關指數(shù),并選擇擬合精度更高、更可靠的模型,預測2021年該景區(qū)的旅游人數(shù)(單位:萬人,精確到個位).
回歸方程 | ① | ② |
30407 | 14607 |
參考公式、參考數(shù)據(jù)及說明:
①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為.②刻畫回歸效果的相關指數(shù);③參考數(shù)據(jù):,.
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com