【題目】已知矩形ABCD的邊AB=2,BC=1,以A為坐標(biāo)原點(diǎn),AB,AD邊分別在x軸、y軸的正半軸上,建立直角坐標(biāo)系。將矩形折疊,使A點(diǎn)落在線段DC上,重新記為點(diǎn)

(1)當(dāng)點(diǎn)坐標(biāo)為(1,1)時(shí),求折痕所在直線方程.

(2)若折痕所在直線的斜率為k,試求折痕所在直線的方程;

(3)當(dāng)時(shí),設(shè)折痕所在直線與軸交于點(diǎn)E,與軸交于點(diǎn)F,將沿折痕EF旋轉(zhuǎn).使二面角的大小為,設(shè)三棱錐的外接球表面積為,試求最小值.

【答案】(1); (2); (3).

【解析】

1)根據(jù)兩個(gè)點(diǎn)關(guān)于直線對(duì)稱(chēng)得到對(duì)稱(chēng)直線的斜率,由中點(diǎn)坐標(biāo)公式得到中點(diǎn),代入直線可得到結(jié)果;(2)當(dāng)時(shí),此時(shí)A點(diǎn)與D點(diǎn)重合,折痕所在直線方程為;當(dāng)時(shí),A點(diǎn)落在線段同DC上的點(diǎn)記為G(,1),根據(jù)對(duì)稱(chēng)性得到直線斜率和直線上的點(diǎn),由點(diǎn)斜式得到結(jié)果;(3)根據(jù)題意可得到EF的中點(diǎn)G為外接球的球心,根據(jù)兩點(diǎn)間距離公式可得到半徑,進(jìn)而求解.

(1)折疊后,根據(jù)點(diǎn)關(guān)于線對(duì)稱(chēng)得到直線的斜率為:,兩個(gè)點(diǎn)的中點(diǎn)為:在直線上,故易求所在直線方程為:.

(2)當(dāng)時(shí),此時(shí)A點(diǎn)與D點(diǎn)重合,折痕所在直線方程為

當(dāng)時(shí),將矩形折疊后A點(diǎn)落在線段同DC上的點(diǎn)記為G(,1) (),則A與G關(guān)于折痕所在直線對(duì)稱(chēng),

線段OG中點(diǎn),所以折痕所在直線方程為:

綜上所述,所求折痕所在直線方程為.

(3)由(2)當(dāng)時(shí),折痕所在直線與軸交于點(diǎn)E,與軸交于點(diǎn)F,則,記EF的中點(diǎn)為G點(diǎn),根據(jù)直角三角形中線的性質(zhì)得到:,故得到G點(diǎn)為球的直徑;球的直徑即為

所以所以 ,

所以最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的三邊長(zhǎng)是三個(gè)連續(xù)的自然數(shù),且最大角是最小角的2倍,則此三角形的面積為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)若直線過(guò)點(diǎn),求直線的極坐標(biāo)方程;

(2)若直線與曲線交于兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了及時(shí)向群眾宣傳“十九大”黨和國(guó)家“鄉(xiāng)村振興”戰(zhàn)略,需要尋找一個(gè)宣講站,讓群眾能在最短的時(shí)間內(nèi)到宣講站.設(shè)有三個(gè)鄉(xiāng)鎮(zhèn),分別位于一個(gè)矩形的兩個(gè)頂點(diǎn)的中點(diǎn)處,,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與等距離的一點(diǎn)處設(shè)一個(gè)宣講站,記點(diǎn)到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和為

(Ⅰ)設(shè),將表示為的函數(shù);

(Ⅱ)試?yán)茫á瘢┑暮瘮?shù)關(guān)系式確定宣講站的位置,使宣講站到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四面體ABCD及其三視圖(如圖2所示),過(guò)棱AB的中點(diǎn)E作平行于AD,BC的平面分別交四面體的棱BD,DC,CA于點(diǎn)F,G,H.

(1)證明:四邊形EFGH是矩形;
(2)求直線AB與平面EFGH夾角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(2,2),B(5,3),C(3,-1).

(1)求△ABC的外接圓的方程;

(2)若點(diǎn)M(a,2)在△ABC的外接圓上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn).所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號(hào)為第一組,第二組,…,第五組.如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒(méi)有療效的有6人,則第三組中有療效的人數(shù)為(

A.6
B.8
C.12
D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為隨機(jī)變量,從棱長(zhǎng)為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時(shí),;當(dāng)兩條棱平行時(shí),的值為兩條棱之間的距離;當(dāng)兩條棱異面時(shí),

(1)求概率

(2)求的分布列,并求其數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)站從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶(hù)中隨機(jī)抽取名進(jìn)行調(diào)查,將受訪用戶(hù)按年齡分成組: , ,…, ,并整理得到如下頻率分布直方圖:

(Ⅰ)求的值;

(Ⅱ)從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶(hù)中隨機(jī)抽取一人,估計(jì)其年齡低于歲的概率;

(Ⅲ)估計(jì)春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶(hù)的平均年齡.

查看答案和解析>>

同步練習(xí)冊(cè)答案