【題目】足球是世界普及率最高的運動,我國大力發(fā)展校園足球.為了解本地區(qū)足球特色學校的發(fā)展狀況,社會調(diào)查小組得到如下統(tǒng)計數(shù)據(jù):
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色學校y(百個) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根據(jù)上表數(shù)據(jù),計算y與x的相關系數(shù)r,并說明y與x的線性相關性強弱.
(已知:,則認為y與x線性相關性很強;,則認為y與x線性相關性一般;,則認為y與x線性相關性較):
(2)求y關于x的線性回歸方程,并預測A地區(qū)2020年足球特色學校的個數(shù)(精確到個).
參考公式和數(shù)據(jù):,
,
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)在區(qū)間內(nèi)至少存在一個實數(shù),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的焦點為F,準線為l,A為C上一點,已知以F為圓心,FA為半徑的圓F交l于M.N點.
(1)若,的面積為,求拋物線方程;
(2)若A.M.F三點在同一直線m上,直線n與m平行,且n與C只有一個公共點,求坐標原點到直線n、m距離的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD是直角梯形,,∥,側棱平面ABCD,且.
(1)求證:平面平面;
(2)求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,過點的動直線交拋物線于,兩點
(1)當恰為的中點時,求直線的方程;
(2)拋物線上是否存在一個定點,使得以弦為直徑的圓恒過點?若存在,求出點的坐標;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù),且),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為.
(1)將曲線的參數(shù)方程化為普通方程,并將曲線的極坐標方程化為直角坐標方程;
(2)求曲線與曲線交點的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,一個焦點為.
(1)求橢圓的方程;
(2)若直線與軸交于點,與橢圓交于兩點,線段的垂直平分線與軸交于點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com