【題目】設(shè)函數(shù)(,,)的部分圖象如圖所示.

(1)求函數(shù)的解析式;

(2)求函數(shù)的最小值及取到最小值時(shí)自變量x的集合;

(3)將函數(shù)圖像上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>()倍,得到函數(shù)的圖象.若函數(shù)在區(qū)間上恰有5個(gè)零點(diǎn),求t的取值范圍.

【答案】(1);(2);(3)

【解析】

1)根據(jù)圖像,寫出解析式,,,即可求,再根據(jù)最高點(diǎn)求

2)由三角函數(shù)最值,令,即可求解;

3)由題意,根據(jù)三角函數(shù)變換,寫出函數(shù)解析式,再根據(jù)函數(shù)在區(qū)間上恰有5個(gè)零點(diǎn),取時(shí),,取時(shí),,即可求解參數(shù)取值范圍.

(1)由圖可知:,.

當(dāng)時(shí),,得

,所以.

(2).

此時(shí),即,

即此時(shí)自變量x的集合是.

(3)函數(shù)的零點(diǎn)為(),

所以,,且.所以t的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,且,

1)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)記,求;

3)是否存在實(shí)數(shù)k,使得對(duì)任意都成立?若存在,求實(shí)數(shù)k的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為原點(diǎn),且與直線相切.

1)求圓的方程;

2)點(diǎn)在直線上,過點(diǎn)引圓的兩條切線,,切點(diǎn)為,求證:直線恒過定點(diǎn).

3)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,DAC的中點(diǎn),四邊形BDEF是菱形,平面平面ABC,,

若點(diǎn)M是線段BF的中點(diǎn),證明:平面AMC;

求平面AEF與平面BCF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象與x軸交點(diǎn)為,與此交點(diǎn)距離最小的最高點(diǎn)坐標(biāo)為.

(Ⅰ)求函數(shù)的表達(dá)式;

(Ⅱ)若函數(shù)滿足方程,求方程在內(nèi)的所有實(shí)數(shù)根之和;

(Ⅲ)把函數(shù)的圖像的周期擴(kuò)大為原來的兩倍,然后向右平移個(gè)單位,再把縱坐標(biāo)伸長(zhǎng)為原來的兩倍,最后向上平移一個(gè)單位得到函數(shù)的圖像若對(duì)任意的,方程在區(qū)間上至多有一個(gè)解,求正數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,不過坐標(biāo)原點(diǎn)的直線交于,兩點(diǎn).

(Ⅰ)若,證明:直線過定點(diǎn);

(Ⅱ)設(shè)過且與相切的直線為,過且與相切的直線為.當(dāng)交于點(diǎn)時(shí),求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(),且滿足.

(1)求a的值;

(2)設(shè)函數(shù),(),若存在,,使得成立,求實(shí)數(shù)t的取值范圍;

(3)若存在實(shí)數(shù)m,使得關(guān)于x的方程恰有4個(gè)不同的正根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式的解集為

(1)求a,b的值.

(2)當(dāng)時(shí),解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中是實(shí)數(shù)。設(shè), 為該函數(shù)圖象上的兩點(diǎn),且,若函數(shù)的圖象在點(diǎn)處的切線重合,則的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案