已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)為B(0,-2),離心率為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)A(0,3)的直線l與橢圓交于M、N兩點(diǎn),且|BM|=|BN|,求直線l的方程.
【答案】分析:(I)利用離心率,b=2,a2=b2+c2即可得出;
(2)當(dāng)直線l斜率不存在時(shí),易知不滿足題設(shè)要求.可設(shè)直線l的方程為:y=kx+3,M(x1,y1),N(x2,y2).MN的中點(diǎn)為P(x,y).
把直線方程與橢圓方程聯(lián)立得到根與系數(shù)的關(guān)系,由于|BM|=|BN|,利用垂直平分即可得出直線BP的斜率.
解答:解:(Ⅰ)∵橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,可設(shè)橢圓:
橢圓一個(gè)頂點(diǎn)為B(0,-2),∴b=2,
∵離心率為,∴,∴.①
又∵a2=c2+b2,∴a2=c2+4…②
     聯(lián)立①②解得,a2=12      
∴橢圓的方程為:
(Ⅱ)當(dāng)直線l斜率不存在時(shí),易知不滿足題設(shè)要求.
可設(shè)直線l的方程為:y=kx+3,M(x1,y1),N(x2,y2).MN的中點(diǎn)為P(x,y).
由 消去x 得 (3k2+1)x2+18kx+15=0,
要使直線l與橢圓交于M、N兩點(diǎn),則必須滿足:△=(18k)2-60×(3k2+1)>0,即 …(*)
,∴
,
∵|BM|=|BN|,∴BP⊥MN,
又 B(0,-2)
解得:,滿足(*)式   
∴直線l的方程是
點(diǎn)評(píng):本題綜合考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、利用斜率關(guān)系及其中點(diǎn)坐標(biāo)公式夾角垂直平分問(wèn)題等基礎(chǔ)知識(shí)與基本技能,考查了推理能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
2
2
,且橢圓經(jīng)過(guò)圓C:x2+y2-4x+2
2
y=0的圓心C.
(1)求橢圓的方程;
(2)設(shè)直線l過(guò)橢圓的焦點(diǎn)且與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,直線y=2x+1與該橢圓相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,左焦點(diǎn)為F1(-3,0),右準(zhǔn)線方程為x=
253

(1)求橢圓的標(biāo)準(zhǔn)方程和離心率e;
(2)設(shè)P為橢圓上第一象限的點(diǎn),F(xiàn)2為右焦點(diǎn),若△PF1F2為直角三角形,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),且橢圓過(guò)點(diǎn)P(3,2),焦點(diǎn)在坐標(biāo)軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),一個(gè)焦點(diǎn)F1(0,-2
2
),且離心率e滿足:
2
3
,e,
4
3
成等比數(shù)列.
(1)求橢圓方程;
(2)直線y=x+1與橢圓交于點(diǎn)A,B.求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案