【題目】已知數(shù)列的前n項(xiàng)和為,且().
(1)求;
(2)設(shè)函數(shù),(),求數(shù)列的前n項(xiàng)和;
(3)設(shè)為實(shí)數(shù),對(duì)滿足且的任意正整數(shù)m,n,k,不等式 恒成立,試求實(shí)數(shù)的最大值.
【答案】(1);(2);(3)
【解析】
(1)由已知得an=Sn﹣Sn﹣1=n2﹣(n﹣1)2=2n﹣1;
(2)由已知得c1=f(6)=f(3)=a3=5c2=f(8)=f(4)=f(2)=f(1)=a1=1;當(dāng)n≥3時(shí),cn=f(2n+4)=f(2n﹣1+2)=f(2n﹣2+1)=2(2n﹣1+1)﹣1=2n﹣1+1,由此能求出數(shù)列{cn}的前n項(xiàng)和Tn;
(3)由已知得m2d2+n2d2>ck2d2,λ恒成立.由此能求出λ的最大值.
(1)當(dāng)時(shí),.
當(dāng)時(shí),,滿足上式,所以;
(2)由分段函數(shù)可以得到:
,
,
當(dāng),時(shí),
,
故當(dāng),時(shí),
,
,
所以;
(3)由,及得,
∵,∴,
∵,∴,
要恒成立,只要,∴的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程是(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于,兩點(diǎn)
(1)求曲線的普通方程及直線恒過(guò)的定點(diǎn)的坐標(biāo);
(2)在(1)的條件下,若,求直線的普通方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,那么概率為的事件是( )
A.至多一件一等品B.至少一件一等品
C.至多一件二等品D.至少一件二等品
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)的投放,方便了市民短途出行,被譽(yù)為中國(guó)“新四大發(fā)明”之一.某市為研究單車(chē)用戶與年齡的相關(guān)程度,隨機(jī)調(diào)查了100位成人市民,統(tǒng)計(jì)數(shù)據(jù)如下:
不小于40歲 | 小于40歲 | 合計(jì) | |
單車(chē)用戶 | 12 | y | m |
非單車(chē)用戶 | x | 32 | 70 |
合計(jì) | n | 50 | 100 |
(1)求出列聯(lián)表中字母x、y、m、n的值;
(2)①?gòu)拇藰颖局,?duì)單車(chē)用戶按年齡采取分層抽樣的方法抽出5人進(jìn)行深入調(diào)研,其中不小于40歲的人應(yīng)抽多少人?
②從獨(dú)立性檢驗(yàn)角度分析,能否有以上的把握認(rèn)為該市成人市民是否為單車(chē)用戶與年齡是否小于40歲有關(guān).
下面臨界值表供參考:
P() | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的部分圖象如圖所示,點(diǎn)A,B,C在圖象上,,,并且軸
(1)求和的值及點(diǎn)B的坐標(biāo);
(2)若,且,求的值;
(3)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的倍,橫坐標(biāo)不變,再將所得圖象各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,最后將所得圖象向右平移個(gè)單位,得到的圖象,若關(guān)于x的方程在區(qū)間上有兩個(gè)不同解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用一半徑為4cm的圓形紙片(圓心為O)制作一個(gè)正四棱錐.方法如下:
(1)以O為圓心制作一個(gè)小的圓;
(2)在小的圓內(nèi)制作一內(nèi)接正方形ABCD;
(3)以正方形ABCD的各邊向外作等腰三角形,使等腰三角形的頂點(diǎn)落在大圓上(如圖);
(4)將正方形ABCD作為正四棱錐的底,四個(gè)等腰三角形作為正四棱錐的側(cè)面折起,使四個(gè)等腰三角形的頂點(diǎn)重合,問(wèn):要使所制作的正四棱錐體積最大,則小圓的半徑為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,底面為菱形的直四棱柱被過(guò)三點(diǎn)的平面截去一個(gè)三棱錐(圖一)得幾何體(圖二),E為的中點(diǎn).
(1)點(diǎn)F為棱上的動(dòng)點(diǎn),試問(wèn)平面與平面是否垂直?請(qǐng)說(shuō)明理由;
(2)設(shè),當(dāng)點(diǎn)F為中點(diǎn)時(shí),求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:
則下面結(jié)論中不正確的是
A. 新農(nóng)村建設(shè)后,種植收入減少
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,四邊形是菱形,⊥平面且.
(1)求證:平面⊥平面;
(2)若設(shè)與平面所成夾角為,且,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com