已知二次函數(shù)=的導數(shù)為>0,對任意實數(shù)都有≥0,則的最小值為

A.4      B.3      C.8        D.2

D

【解析】∵=,∴=>0,

∵對任意實數(shù)都有≥0,∴,即,∴>0,

===2,當且僅當取等號,故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c的導數(shù)為f′(x),f′(0)>0,對于任意實數(shù)x都有f(x)≥0,則
f(1)
f′(0)
的最小值為( 。
A、3
B、
5
2
C、2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c的導數(shù)為f′(x),f′(0)>0,對于任意實數(shù)x都有f(x)≥0,則
f(1)f′(0)
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c經過點(0,0),導數(shù)f′(x)=2x+1,當x∈[n,n+1](n∈N*)時,f(x)是整數(shù)的個數(shù)記為an
(1)求a、b、c的值;
(2)求數(shù)列{an}的通項公式;
(3)令bn=
2anan+1
,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c的導數(shù)為f′(x),f′(0)>0,對于任意實數(shù)x,有f(x)≥0,則
f(1)
f′(0)
的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)滿足條件:①在x=1處導數(shù)為0;②圖象過點P(0,-3);③在點P處的切線與直線2x+y=0平行.
(1)求函數(shù)f(x)的解析式.
(2)求在點Q(2,f(2))處的切線方程.

查看答案和解析>>

同步練習冊答案