精英家教網 > 高中數學 > 題目詳情
(1)化簡
1-2sin10°cos10°
sin170°-
1-sin2170°
;
(2)求值sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
分析:(1)利用誘導公式把要求的式子化為
cos10°-sin10°
sin10°-cos10°
,從而得出結論.
(2)利用特殊角的三角函數值以及誘導公式把要求的式子化為
3
4
+(-1)+1-cos230°-sin210°,進一步利用
誘導公式運算求得結果.
解答:解:(1)
1-2sin10°cos10°
sin170°-
1-sin2170°
=
(cos10°-sin10°)2
sin10°-|cos170°|
=
cos10°-sin10°
sin10°+cos170°
=
cos10°-sin10°
sin10°-cos10°
=-1.
(2)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)=
3
4
+(-1)+1-cos230°-sin210°=
3
4
-
3
4
+sin30°=
1
2
點評:本題主要考查同角三角函數的基本關系的應用,特殊角的三角函數值、誘導公式的應用,以及三角函數在各個
象限中的符號,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)化簡
1-2sin10°cos10°
sin170°-
1-sin2170°
;
(2)證明等式:
1-cosx+sinx
1+sinx+cosx
=
sinx
1+cosx

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)化簡
1-2sin10°cos10°
sin170°-
1-sin2170°

(2)若cosθ=
7
4
,求
sin(θ-5π)cos(-
π
2
-θ)cos(8π-θ)
sin(θ-
2
)sin(-θ-4π)
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)化簡
1-2sin10°cos10°
sin170°-
1-sin2170°


(2)證明
cotα-cosα
cotαcosα
=
cotαcosα
cotα+cosα
.(注:其中cotα=
1
tanα

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)化簡
1-2sin10°cos10°
sin170°-
1-sin2170°
;
(2)化簡
sin(θ-5π)cos(-
π
2
-θ)cos(8π-θ)
sin(θ-
2
)sin(-θ-4π)

查看答案和解析>>

同步練習冊答案