在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,若a:b:c=3:5:6,則
2bsinA+csinB
asinC
=
10
3
10
3
分析:利用正弦定理化簡已知等式,得到sinA,sinB,sinC的比值,所求式子利用正弦定理化簡,即可求出值.
解答:解:將a:b:c=3:5:6,利用正弦定理化簡sinA:sinB:sinC=3:5:6,
設(shè)sinA=3k,sinB=5k,sinC=6k,
則原式=
2sinAsinB+sinCsinB
sinAsinC
=
30k2+30k2
18k2
=
10
3

故答案為:
10
3
點(diǎn)評:此題考查了正弦定理,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂一模)已知函數(shù)f(x)=cos
x
2
-
3
sin
x
2

(I)若x∈[-2π,2π],求函數(shù)f(x)的單調(diào)減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C的對邊,若f(2A-
2
3
π)=
4
3
,sinB=
5
cosC,a=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•煙臺二模)在△ABC中,a、b、c為角A、B、C所對的三邊.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,設(shè)內(nèi)角B為x,周長為y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)在△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,三邊a、b、c成等差數(shù)列,且B=
π
4
,則(cosA一cosC)2的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中角A、B、C的對邊分別為a、b、c設(shè)向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圓半徑為1,且abx=a+b試確定x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,已知a=2,b=
7
,∠B=
π
3
,則△ABC的面積為( 。

查看答案和解析>>

同步練習(xí)冊答案