已知函數(shù)的圖象為曲線E.

(Ⅰ) 若曲線E上存在點(diǎn)P,使曲線E在P點(diǎn)處的切線與x軸平行,求a,b的關(guān)系;

(Ⅱ) 說(shuō)明函數(shù)可以在時(shí)取得極值,并求此時(shí)a,b的值;

(Ⅲ) 在滿(mǎn)足(2)的條件下,恒成立,求c的取值范圍.

(1) .

 (2) .

(3) .


解析:

(1) ,設(shè)切點(diǎn)為,則曲線在點(diǎn)P的切線的斜率,由題意知有解,

.

 (2)若函數(shù)可以在時(shí)取得極值,

有兩個(gè)解,且滿(mǎn)足.

易得.

(3)由(2),得.

根據(jù)題意,()恒成立.

∵函數(shù))在時(shí)有極大值(用求導(dǎo)的方法),

且在端點(diǎn)處的值為.

∴函數(shù))的最大值為.  

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年惠州一中五模理) 已知函數(shù)的圖象為曲線E.

(Ⅰ) 若曲線E上存在點(diǎn)P,使曲線EP點(diǎn)處的切線與x軸平行,求a,b的關(guān)系;

(Ⅱ) 說(shuō)明函數(shù)可以在時(shí)取得極值,并求此時(shí)a,b的值;

(Ⅲ) 在滿(mǎn)足(2)的條件下,恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)的圖象為曲線,函數(shù)的圖象為曲線.

(Ⅰ)若曲線沒(méi)有公共點(diǎn),求實(shí)數(shù)的取值范圍;

(II)若,證明:當(dāng)時(shí),恒有成立;w.w.w.k.s.5.u.c.o.m   

(III)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)的圖象為曲線G,曲線G的上焦點(diǎn)為F;(1)求曲線G的標(biāo)準(zhǔn)方程和焦點(diǎn)F的坐標(biāo);(2)P是曲線G上動(dòng)點(diǎn),Q的坐標(biāo)為(0,m),求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年遼寧省高三9月月考理科數(shù)學(xué) 題型:解答題

21.(本小題滿(mǎn)分12分)

已知函數(shù)的圖象為曲線, 函數(shù)的圖象為直線.

 

(Ⅰ) 當(dāng)時(shí), 求的最大值;

(Ⅱ) 設(shè)直線與曲線的交點(diǎn)的橫坐標(biāo)分別為, 且,

求證: .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆新疆烏魯木齊八中高二上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

    已知函數(shù)的圖象為曲線C。

   (1)若曲線C上存在點(diǎn)P,使曲線C在P點(diǎn)處的切線與軸平行,求的關(guān)系;

(2)若函數(shù)時(shí)取得極值,求此時(shí)的值;

   (3)在滿(mǎn)足(2)的條件下,的取值范圍。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案