【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)若 ,求函數(shù)的單調(diào)區(qū)間;

(2)若,且方程內(nèi)有解,求實(shí)數(shù)的取值范圍.

【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)

【解析】【試題分析】(1)先求出函數(shù)解析式導(dǎo)數(shù),再借助導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系求解;(2)依據(jù)題設(shè)先將問(wèn)題進(jìn)行等價(jià)轉(zhuǎn)化,再構(gòu)造函數(shù)運(yùn)用導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系研究函數(shù)的圖像的形狀分析求解:

(1)若, ,則,

,得,

①若,即時(shí), ,此時(shí)函數(shù)單調(diào)遞減,單調(diào)遞減區(qū)間為;

②若,即時(shí),由,得;由,或,

所以單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

(2)若,∴, 則,

若方程內(nèi)有解,即內(nèi)有解,

有解.

設(shè),則內(nèi)有零點(diǎn),設(shè)內(nèi)的一個(gè)零點(diǎn),

因?yàn)?/span> ,所以上不可能單調(diào),

,設(shè),則上存在零點(diǎn),

上至少有兩個(gè)零點(diǎn),因?yàn)?/span>,

當(dāng)時(shí), , 上遞增,不合題意;

當(dāng)時(shí), 上遞減,不合題意;

當(dāng)時(shí),令,得,則上遞減,在上遞增,

上存在最小值.

有兩個(gè)零點(diǎn),則有 .

所以,

設(shè),則,令,得,

當(dāng)時(shí), ,此時(shí)函數(shù)遞增;

當(dāng)時(shí), ,此時(shí)函數(shù)遞減,

,所以恒成立.

, ,所以,

當(dāng)時(shí),設(shè)的兩個(gè)零點(diǎn)為,

上遞增,在上遞減,在上遞增,

, ,則內(nèi)有零點(diǎn),

綜上,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某保險(xiǎn)公司利用簡(jiǎn)單隨機(jī)抽樣方法,對(duì)投保車(chē)輛進(jìn)行抽樣,樣本車(chē)輛中每輛車(chē)的賠付結(jié)果統(tǒng)計(jì)如下:

賠付金額()

0

1 000

2 000

3 000

4 000

車(chē)輛數(shù)()

500

130

100

150

120

(1)若每輛車(chē)的投保金額均為2800,估計(jì)賠付金額大于投保金額的概率.

(2)在樣本車(chē)輛中,車(chē)主是新司機(jī)的占10%,在賠付金額為4000元的樣本車(chē)輛中,車(chē)主是新司機(jī)的占20%,估計(jì)在已投保車(chē)輛中,新司機(jī)獲賠金額為4000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象如圖所示,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)學(xué)生在一次競(jìng)賽中要回答道題是這樣產(chǎn)生的道物理題中隨機(jī)抽取道化學(xué)題中隨機(jī)抽取;道生物題中隨機(jī)抽取.使用合適的方法確定這個(gè)學(xué)生所要回答的三門(mén)學(xué)科的題的序號(hào)(物理題的編號(hào)為化學(xué)題的編號(hào)為,生物題的編號(hào)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)橢圓 ,長(zhǎng)軸的右端點(diǎn)與拋物線(xiàn) 的焦點(diǎn)重合,且橢圓的離心率是

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)作直線(xiàn)交拋物線(xiàn), 兩點(diǎn),過(guò)且與直線(xiàn)垂直的直線(xiàn)交橢圓于另一點(diǎn),求面積的最小值,以及取到最小值時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù) 的取值范圍,

(2)當(dāng)時(shí),關(guān)于的方程在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根,

求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)證明: 當(dāng)時(shí), .

(Ⅱ)證明: 當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,EAB的中點(diǎn),FAA1的中點(diǎn).求證:CED1F,DA三線(xiàn)交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若的單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),求證:函數(shù)有最小值,并求函數(shù)最小值的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案