已知橢圓的右焦點(diǎn)為 ,為橢圓的上頂點(diǎn),為坐標(biāo)原點(diǎn),且兩焦點(diǎn)和短軸的兩端構(gòu)成邊長(zhǎng)為的正方形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在直線(xiàn)交與橢圓于, ,且使,使得為的垂心,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(1) ;(2).
解析試題分析:(1)利用正方形的性質(zhì),橢圓的性質(zhì);(2)由直線(xiàn)的方程于橢圓的方程組成方程組,消去,由及綜合求得.
試題解析:(1)由兩焦點(diǎn)與短軸的兩端點(diǎn)構(gòu)成邊長(zhǎng)為的正方形,則,,
所以橢圓方程為. (4分)
(2)假設(shè)存在直線(xiàn)交橢圓于兩點(diǎn),且使為的垂心,設(shè),,
∵,,則,故直線(xiàn)的斜率,∴設(shè)直線(xiàn)的方程為,
由得,由題意知,即, (7分)
且,,由題意應(yīng)有,
而,,
故, (9分)
∴,
解得或,經(jīng)檢驗(yàn),當(dāng)時(shí),不存在,故舍去,
∴當(dāng)時(shí),所求直線(xiàn)方程為滿(mǎn)足題意,
綜上所述,存在直線(xiàn),且直線(xiàn)的方程為, (14分)
考點(diǎn):橢圓的性質(zhì),直線(xiàn)與橢圓的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.
(I)求橢圓C的方程;
(II)若斜率為k的直線(xiàn)過(guò)點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
四邊形ABCD的四個(gè)頂點(diǎn)都在拋物線(xiàn)上,A,C關(guān)于軸對(duì)稱(chēng),BD平行于拋物線(xiàn)在點(diǎn)C處的切線(xiàn)。
(Ⅰ)證明:AC平分;
(Ⅱ)若點(diǎn)A坐標(biāo)為,四邊形ABCD的面積為4,求直線(xiàn)BD的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:的離心率為,直線(xiàn):與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線(xiàn)過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線(xiàn)垂直于點(diǎn),
線(xiàn)段垂直平分線(xiàn)交于點(diǎn),求點(diǎn)的軌跡的方程;
(Ⅲ)設(shè)與軸交于點(diǎn),不同的兩點(diǎn)在上,且滿(mǎn)足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓的左頂點(diǎn)為,是橢圓上異于點(diǎn)的任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng).
(Ⅰ)若點(diǎn)的坐標(biāo)為,求的值;
(Ⅱ)若橢圓上存在點(diǎn),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知、是橢圓的左、右焦點(diǎn),且離心率,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),的內(nèi)切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個(gè)點(diǎn),滿(mǎn)足向量與共線(xiàn),與共
線(xiàn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定圓的圓心為,動(dòng)圓過(guò)點(diǎn),且和圓相切,動(dòng)圓的圓心的軌跡記為.
(Ⅰ)求曲線(xiàn)的方程;
(Ⅱ)若點(diǎn)為曲線(xiàn)上一點(diǎn),試探究直線(xiàn):與曲線(xiàn)是否存在交點(diǎn)? 若存在,求出交點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若橢圓C:的離心率e為, 且橢圓C的一個(gè)焦點(diǎn)與拋物線(xiàn)y2=-12x的焦點(diǎn)重合.
(1) 求橢圓C的方程;
(2) 設(shè)點(diǎn)M(2,0), 點(diǎn)Q是橢圓上一點(diǎn), 當(dāng)|MQ|最小時(shí), 試求點(diǎn)Q的坐標(biāo);
(3) 設(shè)P(m,0)為橢圓C長(zhǎng)軸(含端點(diǎn))上的一個(gè)動(dòng)點(diǎn), 過(guò)P點(diǎn)斜率為k的直線(xiàn)l交橢圓與
A,B兩點(diǎn), 若|PA|2+|PB|2的值僅依賴(lài)于k而與m無(wú)關(guān), 求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com