【題目】已知函數(shù)

1)拋物線的開口向 、對稱軸為直線 、頂點坐標 ;

2)當 時,函數(shù)有最 值,是 ;

3)當 時,的增大而增大;當 時,的增大而減。

4)該函數(shù)圖象可由的圖象經(jīng)過怎樣的平移得到的?

【答案】1)下;; 2;大;; 3;; 4)向左個,向上平移個單位.

【解析】

1),(2),(3)由于是二次函數(shù),由此可以確定函數(shù)的圖象的形狀,根據(jù)二次項系數(shù)可以確定開口方向,根據(jù)拋物線的頂點式解析式可以確定其頂點的坐標,對稱軸及增減性;(4)根據(jù)左加右減,上加下減可得出答案.

解:由二次函數(shù)可得

1)拋物線的開口方向向下,對稱軸為直線x=-2,頂點坐標為(-2,9)

2)當x=-2時,函數(shù)y有最大值,是9

3)當x-2時,函數(shù)yx的增大而增大,當x-2時,函數(shù)yx的增大而減。

4)函數(shù)的圖象先向左平移2個單位,再向上平移9個單位即可得到

故答案為 ;大;; 向左個,向上平移個單位.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知中,三個內(nèi)角,,所對的邊分別是,

1)證明:;

2)在①,②,③這三個條件中任選一個補充在下面問題中,并解答

,,________,求的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面幾種推理是合情推理的是(  )

①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);

②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是歸納出所有三角形的內(nèi)角和都是

③由,滿足,推出是奇函數(shù);

④三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,由此得凸多邊形內(nèi)角和是.

A. ①②④B. ①③④C. ②④D. ①②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中有7個球,其中4個白球,3個紅球,從袋中任意取出2個球,求下列事件的概率:

(1) 取出的2個球都是白球;

(2)取出的2個球中1個是白球,另1個是紅球.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a3=2,前3項和為S3.

(1)求{an}的通項公式;

(2)設等比數(shù)列{bn}滿足b1a1,b4a15,求{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,坐標原點為.橢圓的動弦過右焦點且不垂直于坐標軸, 的中點為,過且垂直于線段的直線交射線于點

(I)證明:點在直線上;

(Ⅱ)當四邊形是平行四邊形時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】二次函數(shù)圖象上部分點的橫坐標x,縱坐標y的對應值如下表:

x

-4

-3

-2

-1

0

1

5

0

-3

-4

-3

m

1m= ;

2)在圖中畫出這個二次函數(shù)的圖象;

3)當時,x的取值范圍是 ;

4)當時,y的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)從某醫(yī)院中隨機抽取了七位醫(yī)護人員的關(guān)愛患者考核分數(shù)(患者考核: 分制),用相關(guān)的特征量表示;醫(yī)護專業(yè)知識考核分數(shù)(試卷考試: 分制),用相關(guān)的特征量表示,數(shù)據(jù)如下表:

特征量

1

2

3

4

5

6

7

98

88

96

91

90

92

96

9.9

8.6

9.5

9.0

9.1

9.2

9.8

(1)求關(guān)于的線性回歸方程(計算結(jié)果精確到);

(2)利用(1)中的線性回歸方程,分析醫(yī)護專業(yè)考核分數(shù)的變化對關(guān)愛患者考核分數(shù)的影響,并估計某醫(yī)護人員的醫(yī)護專業(yè)知識考核分數(shù)為分時,他的關(guān)愛患者考核分數(shù)(精確到);

(3)現(xiàn)要從醫(yī)護專業(yè)知識考核分數(shù)分以下的醫(yī)護人員中選派人參加組建的“九寨溝災后醫(yī)護小分隊”培訓,求這兩人中至少有一人考核分數(shù)在分以下的概率.

附:回歸方程中斜率和截距的最小二乘法估計公式分別為, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生物研究者于元旦在湖中放入一些鳳眼蓮,這些鳳眼蓮在湖中的蔓延速度越來越快,二月底測得鳳眼蓮覆蓋面積為,三月底測得鳳眼蓮覆蓋面積為,鳳眼蓮覆蓋面積 (單位:)與月份(單位:月)的關(guān)系有兩個函數(shù)模型可供選擇.

1)試判斷哪個函數(shù)模型更合適并求出該模型的解析式;

2)求鳳眼蓮覆蓋面積是元旦放入面積倍以上的最小月份.

(參考數(shù)據(jù),

查看答案和解析>>

同步練習冊答案