10.函數(shù)定義域的求法:
(1)y=$\frac{f(x)}{g(x)}$,則g(x)≠0;
(2)y=$\root{2n}{f(x)}$(n∈N*),則f(x)≥0;
(3)y=[f(x)]0,則f(x)≠0;
(4)如:y=logf(x)g(x),則f(x)>0且f(x)≠1,g(x)>0.

分析 直接由函數(shù)的性質(zhì)逐個(gè)判斷得答案.

解答 解:(1)由分式的分母不等于0,則g(x)≠0;
(2)由根式內(nèi)部的代數(shù)式大于等于0,則f(x)≥0;
(3)由冪函數(shù)的性質(zhì),則f(x)≠0;
(4)由對(duì)數(shù)函數(shù)的性質(zhì),則f(x)≥0且f(x)≠1,g(x)>0.
故答案為:g(x)≠0;f(x)≥0;f(x)≠0;f(x)>0且f(x)≠1,g(x)>0.

點(diǎn)評(píng) 本題考查了函數(shù)的定義域及其求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若雙曲線C的頂點(diǎn)和焦點(diǎn)分別為橢圓$\frac{x^2}{9}$+$\frac{y^2}{5}$=1的焦點(diǎn)和頂點(diǎn),則雙曲線C的方程為(  )
A.$\frac{x^2}{5}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{5}=1$C.$\frac{x^2}{5}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{5}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={-2,-1,0,1,2,3},集合B={x|y=$\sqrt{4-{x}^{2}}$},則A∩B等于(  )
A.[-2,2]B.{-1,0,1}C.{-2,-1,0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合A={x|x-1≤2},B={x|2<x<2m+1,m∈R}≠∅.
(1)若m=3,求(∁RA)∩B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.偶函數(shù)f(x) 在(0,+∞)上遞增,若f(2)=0,則$\frac{{f(x)+f({-x})}}{x}$<0的解集是(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.若?x∈R,函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在正三棱柱ABC-A1B1C1中,點(diǎn)D是棱AB的中點(diǎn),BC=2,AA1=2$\sqrt{3}$.
(1)求證:BC1∥平面A1DC;
(2)求二面角D-A1C-A的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=|x|(2-x),關(guān)于x的方程f(x)=m(m∈R)有三個(gè)不同的實(shí)數(shù)解x1,x2,x3,則x1x2x3的取值范圍為(1-$\sqrt{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=$\sqrt{3}sinxcosx+{cos^2}$x,x∈R.
(1)求$f(\frac{4π}{3})$;
(2)求函數(shù)f(x)的最小正周期與單調(diào)減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案