【題目】O為坐標原點,直線l與圓x2+y2=2相切.
(1)若直線l分別與x、y軸正半軸交于A、B兩點,求△AOB面積的最小值及面積取得最小值時的直線l的方程.
(2)設直線l交橢圓 =1于P、Q兩點,M為PQ的中點,求|OM|的取值范圍.

【答案】
(1)解:設直線l的方程為 =1(a,b>0),

由直線和圓x2+y2=4相切,可得 = ,

即有 = ,即ab≥4,

當且僅當a=b=2時,取得等號.

則△AOB面積S= ab的最小值為2;

此時直線的方程為x+y﹣2=0


(2)解:若直線的斜率不存在,設為x=t,

由直線和圓相切可得,t=﹣

代入橢圓方程可得,y=± ,

可得中點M坐標為(﹣ ,0)或( ,0),|OM|= ;

設直線l的方程為y=kx+m,代入橢圓方程可得,

(1+2k2)x2+4kmx+2m2﹣6=0,

△=16k2m2﹣4(1+2k2)(2m2﹣6)>0,

即為m2<3+6k2

由直線和圓相切,可得 = ,

即為m2=2+2k2,由2+2k2<3+6k2,可得k∈R,

設P,Q的坐標為(x1,y1),(x2,y2),

可得x1+x2=﹣ ,中點M的坐標為(﹣ ),

即有|OM|= =

設1+2k2=t(t≥1),則|OM|= =

= ,由t≥1可得t=2取得最大值

t=1時,取得最小值

故|OM|的范圍是[ ]


【解析】(1)設出直線方程,由直線和圓相切的條件:d=r,結合基本不等式,即可得到面積的最小值和此時直線的方程;(2)討論直線的斜率不存在和存在,設出直線方程為y=kx+m,代入橢圓方程,運用韋達定理和中點坐標公式,結合判別式大于0,化簡整理即可得到所求范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心在軸的正半軸上,且半徑為2的圓被直線截得的弦長為.

1)求圓的方程;

2)設動直線與圓交于兩點,則在軸正半軸上是否存在定點,使得直線與直線關于軸對稱?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《張丘建算經(jīng)》是公元5世紀中國古代內容豐富的數(shù)學著作,書中卷上第二十三問:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”其意思為“有個女子織布,每天比前一天多織相同量的布,第一天織五尺,一個月(按30天計)共織390尺.問:每天多織多少布?”已知1匹=4丈,1丈=10尺,估算出每天多織的布的布約有(
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列{an}前n項和為Sn , a1=a2=2,且滿足Sn+Sn+1+Sn+2=3n2+6n+5,則S47等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過兩點,如圖所示,且函數(shù)的值域為.過該函數(shù)圖象上的動點軸的垂線,垂足為,連接.

(I)求函數(shù)解析式

的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|x+m|.
(Ⅰ) 解關于m的不等式f(1)+f(﹣2)≥5;
(Ⅱ)當x≠0時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正整數(shù)數(shù)列滿足,對于給定的正整數(shù),若數(shù)列中首個值為1的項為,我們定義,則_____.設集合,則集合中所有元素的和為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校200名學生的數(shù)學期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是.

1)求圖中m的值;

2)根據(jù)頻率分布直方圖,估計這200名學生的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表)和中位數(shù)(四舍五入取整數(shù));

3)若這200名學生的數(shù)學成績中,某些分數(shù)段的人數(shù)x與英語成績相應分數(shù)段的人數(shù)y之比如下表所示,求英語成績在的人數(shù).

分數(shù)段

[70,80

[8090

[90,100

[100110

[110,120

xy

1:2

2:1

6:5

1:2

1:1

查看答案和解析>>

同步練習冊答案