如圖,已知△OFQ的面積為S,且·=1.

(1)若<S<2,求向量的夾角θ的取值范圍;

(2)設(shè)||=c(c≥2),S=c,若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q,當(dāng)||取最小值時(shí),求橢圓的方程.

解:(1)由已知,得

   

    ∴tanθ=2S.

    ∵<S<2,

    ∴1<tanθ<4.

    則<θ<arctan4.

(2)以O(shè)為原點(diǎn),在直線為x軸建立平面直角坐標(biāo)系.

設(shè)橢圓方程為+=1(a>b>0),Q(x,y).

    =(c,0),則=(x-c,y).

    ∵||·y=c,

    ∴y=.

    又∵·=c(x-c)=1,

    ∴x=c+.

    則||==(c≥2).

    可以證明:當(dāng)c≥2時(shí),函數(shù)t=c+為增函數(shù),∴當(dāng)c=2時(shí),

    ||min==,

    此時(shí)Q(,).

    將Q的坐標(biāo)代入橢圓方程,得

    解得

    ∴橢圓方程為+=1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△OFQ的面積為S,且
OF
FQ
=1

(Ⅰ)若
1
2
<S<
3
2
,求
OF
,
FQ
的范圍;
(Ⅱ)設(shè)|
OF
|=c(c≥2),S=
3
4
c.
若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q,以c為變量,當(dāng)|
OQ
|
取最小值時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△OFQ的面積為S,且
OF
FQ
=1

(Ⅰ)若
1
2
<S<
3
2
,求
OF
,
FQ
的范圍;
(Ⅱ)設(shè)|
OF
|=c(c≥2),S=
3
4
c.
若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q,以c為變量,當(dāng)|
OQ
|
取最小值時(shí),求橢圓的方程.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市首師大附中高三大練習(xí)數(shù)學(xué)試卷10(理科)(解析版) 題型:解答題

如圖,已知△OFQ的面積為S,且
(Ⅰ)若,求的范圍;
(Ⅱ)設(shè)若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q,以c為變量,當(dāng)取最小值時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省石家莊市正定中學(xué)高三第三次考試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知△OFQ的面積為S,且
(Ⅰ)若,求的范圍;
(Ⅱ)設(shè)若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q,以c為變量,當(dāng)取最小值時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)精品復(fù)習(xí)09:平面向量的概念及運(yùn)算(解析版) 題型:解答題

如圖,已知△OFQ的面積為S,且
(Ⅰ)若,求的范圍;
(Ⅱ)設(shè)若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q,以c為變量,當(dāng)取最小值時(shí),求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案