【題目】解關(guān)于x的不等式:(a+1)x2-(2a+3)x+2<0.

【答案】答案見解析。

【解析】

因?yàn)槎雾?xiàng)系數(shù)a+1含字母應(yīng)對(duì)a+1分等于0、大于0、小于0三種情況討論。當(dāng)a+1=0時(shí)不等式轉(zhuǎn)化為一次不等式;當(dāng)a+1大于0、小于0時(shí),結(jié)合二次函數(shù)圖像解一元二次不等式即可。

(1)當(dāng)a+1=0a=-1時(shí),原不等式變?yōu)椋?/span>x+2<0, 即x>2.

(2)當(dāng)a+1>0a>-1時(shí),原不等式可轉(zhuǎn)化為

方程的根是。

若-1<a<,則>2,解得2<x<;

a,則=2,解得x;

a>,則<2, 解得<x<2.

(3)當(dāng)a<-1時(shí),原不等式可轉(zhuǎn)化為.

a<-1,∴<2, 解得x<x>2.

綜上可知,

當(dāng)a>時(shí),原不等式的解集為{x|<x<2};

當(dāng)a時(shí),原不等式的解集為;

當(dāng)-1<a<時(shí),原不等式的解集為{x|2<x<}.

當(dāng)a=-1時(shí),原不等式的解集為{x|x>2}.

當(dāng)a<-1時(shí),原不等式的解集為{x| x<x>2}.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=﹣ ,當(dāng)1≤x≤2時(shí),f(x)=x,則f(﹣ )=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于異面直線,有下列四個(gè)命題:

(1)過直線有且僅有一個(gè)平面,使//;

(2)過直線有且僅有一個(gè)平面,使 ;

(3)在空間中存在平面,使//,//;

(4)在空間中不存在平面,使 , ;

其中正確命題的序號(hào)是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面上,我們?nèi)绻靡粭l直線去截正方形的一個(gè)角,那么截下的一個(gè)直角三角形,按圖所標(biāo)邊長(zhǎng),由勾股定理有:c2a2b2。設(shè)想正方形換成正方體,把截線換成如下圖的截面,這時(shí)從正方體上截下三條側(cè)棱兩兩垂直的三棱錐OLMN,如果用S1,S2S3表示三個(gè)側(cè)面面積,S4表示截面面積,那么你類比得到的結(jié)論是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)為了解轄區(qū)住戶中離退休老人每天的平均戶外活動(dòng)時(shí)間,從轄區(qū)住戶的離退休老人中隨機(jī)抽取了100位老人進(jìn)行調(diào)查,獲得了每人每天的平均戶外活動(dòng)時(shí)間(單位:小時(shí)),活動(dòng)時(shí)間按照[0,0.5),[0.5,1),…,[4,4.5]從少到多分成9組,制成樣本的頻率分布直方圖如圖所示.

Ⅰ)求圖中a的值;

Ⅱ)估計(jì)該社區(qū)住戶中離退休老人每天的平均戶外活動(dòng)時(shí)間的中位數(shù);

(III)在[1.5,2)、[2,2.5)這兩組中采用分層抽樣抽取9人,再?gòu)倪@9人中隨機(jī)抽取2人,求抽取的兩人恰好都在同一個(gè)組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足a1=2,an1=3an+2,

(1)證明:是等比數(shù)列,并求的通項(xiàng)公式;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,是等腰三角形,且.四邊形是直角梯形,,,,,.

(Ⅰ)求證:平面;

(Ⅱ)當(dāng)平面 平面時(shí),求四棱錐的體積;

(Ⅲ)請(qǐng)?jiān)趫D中所給的五個(gè)點(diǎn)中找出兩個(gè)點(diǎn),使得這兩點(diǎn)所在的直線與直線垂直,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)在區(qū)間A上,對(duì)a,b,c∈A,f(a),f(b),f(c)為一個(gè)三角形的三邊長(zhǎng),則稱函數(shù)f(x)為“三角形函數(shù)”.已知函數(shù)f(x)=xlnx+m在區(qū)間[ ,e]上是“三角形函數(shù)”,則實(shí)數(shù)m的取值范圍為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的三邊長(zhǎng)滿足,則的取值范圍為______

查看答案和解析>>

同步練習(xí)冊(cè)答案