【答案】分析:對x分3種情況進行分析,x=0代入顯然成立;x>0和x<0時令f(x)=ex-x-1,根據(jù)其單調(diào)性進行證明.
解答:證明:(1)當(dāng)x=0時,ex=1,x+1=1,命題成立;
(2)當(dāng)x>0時,令f(x)=ex-x-1,
則f′(x)=ex-1>0∴f(x)在(0,+∞)上為增函數(shù)
∵x>0,∴f(x)>f(0)=e-0-1=0即ex-x-1>0∴ex>x+1;
(3)當(dāng)x<0時,令f(x)=ex-x-1,
則f′(x)=ex-1<0∴f(x)在(-∞,0)上為減函數(shù)
∵x<0,∴f(x)>f(0)=e-0-1=0即ex-x-1>0∴ex>x+1
綜合以上情況,ex≥x+1.
點評:本題主要考查指數(shù)函數(shù)的單調(diào)性問題.指數(shù)函數(shù)的單調(diào)性不僅僅會根據(jù)其圖象還要會由導(dǎo)數(shù)的正負(fù)值來判斷,當(dāng)導(dǎo)數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)數(shù)小于0時原函數(shù)單調(diào)遞減.