(12分)已知函數(shù)

 (1)若當(dāng)的表達(dá)式;

(2)求實(shí)數(shù)上是單調(diào)函數(shù).

 

【答案】

(1);(2)

【解析】

試題分析:(1)由可求出f(x)的單調(diào)區(qū)間,進(jìn)而得到f(x)在處取得最大值,然后討論兩種情況下的最大值,最終通過(guò)解方程求出a值.

(2)先求出,然后求導(dǎo),利用導(dǎo)數(shù)研究其單調(diào)區(qū)間,由于含有參數(shù)a,所以應(yīng)注意對(duì)a進(jìn)行討論求解.

(1)

    單調(diào)遞減,

    所以取最大值

   ①

    解得符合題意

   ②

    解得舍去

   ③

    解得舍去

    綜上

   (2)

   

   ①

    所以上單調(diào)遞減

   ②

 

上不單調(diào)

    綜上

考點(diǎn):導(dǎo)數(shù)在研究函數(shù)單調(diào)性,極值,最值當(dāng)中的應(yīng)用.

點(diǎn)評(píng):利用導(dǎo)數(shù)研究單調(diào)區(qū)間,就是根據(jù)導(dǎo)數(shù)大(。┯诹悖獠坏仁角蟪銎鋯握{(diào)增(減)區(qū)間,含參時(shí)要注意對(duì)參數(shù)進(jìn)行討論,求導(dǎo)時(shí)還要注意函數(shù)的定義域.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù).

(1)若點(diǎn)()為函數(shù)的圖象的公共點(diǎn),試求實(shí)數(shù)的值;

(2)設(shè)是函數(shù)的圖象的一條對(duì)稱軸,求的值;

(3)求函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省高三第一次學(xué)情摸底考試數(shù)學(xué)卷 題型:解答題

(本題滿分13 分)

    已知函數(shù)

   (1)若在的圖象上橫坐標(biāo)為的點(diǎn)處存在垂直于y 軸的切線,求a 的值;

   (2)若在區(qū)間(-2,3)內(nèi)有兩個(gè)不同的極值點(diǎn),求a 取值范圍;

   (3)在(1)的條件下,是否存在實(shí)數(shù)m,使得函數(shù)的圖象與函數(shù)的圖象恰有三個(gè)交點(diǎn),若存在,試出實(shí)數(shù)m 的值;若不存在,說(shuō)明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷一 題型:解答題

(15 分)

已知函數(shù)

(1)若在的圖象上橫坐標(biāo)為的點(diǎn)處存在垂直于y 軸的切線,求a 的值;

(2)若在區(qū)間(-2,3)內(nèi)有兩個(gè)不同的極值點(diǎn),求a 取值范圍;

(3)在(1)的條件下,是否存在實(shí)數(shù)m,使得函數(shù)的圖象與函數(shù)的圖象恰有三個(gè)交點(diǎn),若存在,試出實(shí)數(shù)m 的值;若不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆貴州省高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題

、(本小題滿分12分)已知函數(shù)

(1)若,求的零點(diǎn);

(2)若函數(shù)在區(qū)間上有兩個(gè)不同的零點(diǎn),求的取值范圍。

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案