(本題滿分14分)
如圖, ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P為AB的中點.

(1)求證:平面PCF⊥平面PDE;
(2)求證:AE∥平面BCF.
證明:(1)在矩形ABCD中,由AP=BP=BC=2a可得PC=PD=………………1分
又CD=4a,由勾股定理可得PD⊥PC……………………3分
因為CF⊥平面ABCD,則PD⊥CF……………………5分
由PCCF=C可得PD⊥平面PFC……………………6分
故平面PCF⊥平面PDE……………………7分
(2)作FC中點M,連接EM、BM
由CF⊥平面ABCD,DE⊥平面ABCD可得CM∥DE,又CM=DE=a,得四邊形DEMC為平行四邊形……………………9分
故ME∥CD∥AB,且ME=D=AB,所以四邊形AEMB為平行四邊形
故AE∥BM……………………12分
又AE平面BCF,BM平面BCF,所以AE∥平面BCF. ……………………14分
注:本題也可以用平面ADE∥平面BCF證。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,為正三角形,平面,的中點,

(1)求證:DM//面ABC;   
(2)平面平面
(3)求直線AD與面AEC所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在正三棱柱ABC—A1B1C1中,BB1=2,BC=2,D為B1C1的中點。
(Ⅰ)證明:B1C⊥面A1BD
(Ⅱ)求二面角B—AC—B1的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)
在三棱錐中,△ABC是邊長為4的正三角形,平面,M、N分別為AB、SB的中點。

(1)證明:
(2)求二面角N-CM-B的大。
(3)求點B到平面CMN的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線上的一個點在平面α內(nèi),另一個點在平面α外,則直線與平面α的位置關(guān)系是(   )
A.αB.αC.∥αD.以上都不正確

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(本小題滿分14分)
在三棱錐中,是邊長為的正三角形,平面⊥平面,,、分別為、的中點。
(1)證明:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(本題滿分14分).如圖,ABCD中,AB=1,AD=2AB,∠ADC=,EC⊥面ABCD,
EF∥AC, EF=, CE=1
(1)求證:AF∥面BDE
(2)求CF與面DCE所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知在三棱錐T-ABC中,TA,TB,TC兩兩垂直,T在地面ABC上的投影為D,給出下列命題:
①TA⊥BC, TB⊥AC, TC⊥AB;
②△ABC是銳角三角形;
;
(注:表示△ABC的面積)
其中正確的是_______(寫出所有正確命題的編號)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是平面,是直線,且平面,則與平面的位置關(guān)系是 
A.平面B.平面
C.平面D.與平面相交但不垂直

查看答案和解析>>

同步練習冊答案