已知兩定點(diǎn)E(-2,0),F(2,0),動(dòng)點(diǎn)P滿足,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M滿足,點(diǎn)M的軌跡為C.
(1)求曲線C的方程
(2)過點(diǎn)D(0,-2)作直線與曲線C交于A、B兩點(diǎn),點(diǎn)N滿足
(O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)的直線的方程.
(1) (2) 直線的方程為

試題分析:解(1)動(dòng)點(diǎn)P滿足,點(diǎn)P的軌跡是以E F為直徑的圓,動(dòng)點(diǎn)P的軌跡方程為.設(shè)M(x,y)是曲線C上任一點(diǎn),因?yàn)镻Mx軸,,點(diǎn)P的坐標(biāo)為(x,2y), 點(diǎn)P在圓上,  ,
曲線C的方程是 .
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011533768716.png" style="vertical-align:middle;" />,所以四邊形OANB為平行四邊形,
當(dāng)直線的斜率不存在時(shí)顯然不符合題意;
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為y=kx-2,與橢圓交于兩點(diǎn),由
,由,得,即


     10分


,解得,滿足,
,(當(dāng)且僅當(dāng)時(shí)“=”成立),
當(dāng)平行四邊形OANB面積的最大值為2.
所求直線的方程為
點(diǎn)評(píng):主要是考查了運(yùn)用代數(shù)的方法來通過向量的數(shù)量積的公式,以及聯(lián)立方程組,結(jié)合韋達(dá)定理來求解,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對(duì)“相關(guān)曲線”.已知、是一對(duì)相關(guān)曲線的焦點(diǎn),是它們?cè)诘谝幌笙薜慕稽c(diǎn),當(dāng)時(shí),這一對(duì)相關(guān)曲線中雙曲線的離心率是( 。
                                     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是拋物線的焦點(diǎn),準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)在拋物線上,且,則等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在橢圓上找一點(diǎn),使這一點(diǎn)到直線的距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)軸上,準(zhǔn)線與圓相切.

(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點(diǎn),命題P:“若直線過定點(diǎn),則”,請(qǐng)判斷命題P的真假,并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若焦點(diǎn)在軸上的橢圓的離心率為,則的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過拋物線的焦點(diǎn)作傾斜角為的直線交拋物線于兩點(diǎn),過點(diǎn)作拋物線的切線軸于點(diǎn),過點(diǎn)作切線的垂線交軸于點(diǎn)。

(1) 若,求此拋物線與線段以及線段所圍成的封閉圖形的面積。
(2) 求證:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長(zhǎng)軸長(zhǎng)為,焦點(diǎn)是,點(diǎn)到直線的距離為,過點(diǎn)且傾斜角為銳角的直線與橢圓交于A、B兩點(diǎn),使得|=3|.
(1)求橢圓的標(biāo)準(zhǔn)方程;         
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)雙曲線的頂點(diǎn)為,該雙曲線又與直線交于兩點(diǎn),且為坐標(biāo)原點(diǎn))。
(1)求此雙曲線的方程;
(2)求

查看答案和解析>>

同步練習(xí)冊(cè)答案