設(shè)函數(shù)
(1)當(dāng)時(shí),求的最大值;
(2)令,以其圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),方程有唯一實(shí)數(shù)解,求正數(shù)的值.

(1)0;(2);(3)1

解析試題分析:(1)當(dāng)時(shí),     1分
(舍去)                 2分
當(dāng)時(shí),,單調(diào)遞增,
當(dāng)時(shí),,單調(diào)遞減                  3分
所以的最大值為                                4分
(2)    6分
恒成立得恒成立         7分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/8/1pxqo2.png" style="vertical-align:middle;" />,等號(hào)當(dāng)且僅當(dāng)時(shí)成立            8分
所以                                                   9分
(3)時(shí),方程
設(shè),解
(<0舍去),
單調(diào)遞減,在單調(diào)遞增,最小值為      11分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/af/0/1zzum2.png" style="vertical-align:middle;" />有唯一實(shí)數(shù)解,有唯一零點(diǎn),所以    12分

因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/de/4/gnnta1.png" style="vertical-align:middle;" />單調(diào)遞增,且,所以           13分
從而                                                       14分
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):此類問題是在知識(shí)的交匯點(diǎn)處命題,將函數(shù)、導(dǎo)數(shù)、不等式、方程的知識(shí)融合在一起進(jìn)行考查,重點(diǎn)考查了利用導(dǎo)數(shù)研究函數(shù)的極值與最值等知識(shí)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).()
(1)當(dāng)時(shí),試確定函數(shù)在其定義域內(nèi)的單調(diào)性;
(2)求函數(shù)上的最小值;
(3)試證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)其中
(1)若=0,求的單調(diào)區(qū)間;
(2)設(shè)表示兩個(gè)數(shù)中的最大值,求證:當(dāng)0≤x≤1時(shí),||≤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),且處取得極值.
(1)求函數(shù)的解析式.
(2)設(shè)函數(shù),是否存在實(shí)數(shù),使得曲線軸有兩個(gè)交點(diǎn),若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

文科設(shè)函數(shù)。(Ⅰ)若函數(shù)處與直線相切,①求實(shí)數(shù),b的值;②求函數(shù)上的最大值;(Ⅱ)當(dāng)時(shí),若不等式對(duì)所有的都成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的最小值為0,其中
(1)求a的值
(2)若對(duì)任意的,有成立,求實(shí)數(shù)k的最小值
(3)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1) 求的單調(diào)區(qū)間與極值;
(2)是否存在實(shí)數(shù),使得對(duì)任意的,當(dāng)時(shí)恒有成立.若存在,求的范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),其中
(1)若有極值,求的取值范圍;
(2)若當(dāng),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分l2分)
已知函數(shù)
(1)若,求函數(shù)的極小值;
(2)設(shè)函數(shù),試問:在定義域內(nèi)是否存在三個(gè)不同的自變量使得的值相等,若存在,請(qǐng)求出的范圍,若不存在,請(qǐng)說明理由?

查看答案和解析>>

同步練習(xí)冊(cè)答案