對于任意實數(shù)x,?x>表示不小于x的最小整數(shù),如?1.2>=2,?-0.2>=0.定義在R上的函數(shù)f(x)=?x>+?2x>,若集合A={y|y=f(x),-1≤x≤0},則集合A中所有元素的和為
 
分析:根據(jù)新定義,?x>表示不小于x的最小整數(shù),要求y=f(x)=?x>+?2x>,需要分類討論,根據(jù)x的不同的取值范圍進行求解,即可得到答案.
解答:解:若A={y|y=f(x),-1≤x≤0},
當x=-1時,2x=-2,f(x)=?x>+?2x>=-1+(-2)=-3
當x∈(-1,-
1
2
]時,-2<2x≤-1,f(x)=?x>+?2x>=0+(-1)=-1,
當x∈(-
1
2
,0]時,-1<2x≤0,f(x)=?x>+?2x>=0+0=0,
∴集合A中所有元素的和為-3+(-1)+0=-4.
故答案為:-4.
點評:本題主要考查函數(shù)的值,需要分類進行討論,新定義一般需要認真讀題,理解題意,靈活利用已知定義是解題的關鍵.屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個函數(shù)在數(shù)學本身和生產(chǎn)實踐中都有廣泛的應用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關的另一個函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個常用函數(shù).
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于任意實數(shù)x,y,定義:F(x,y)=
1
2
(x+y+|x-y|)
,如果函數(shù)f(x)=x2,g(x)=x,h(x)=-x+2,那么滿足F(F(f(x),g(x)),F(xiàn)(g(x),h(x))≥2的x的集合是
{x|x≤0或x≥
2
}
{x|x≤0或x≥
2
}

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣西北海市合浦七中高一(上)期中數(shù)學試卷(解析版) 題型:解答題

對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個函數(shù)在數(shù)學本身和生產(chǎn)實踐中都有廣泛的應用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關的另一個函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個常用函數(shù).
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣西北海市合浦七中高一(上)期中數(shù)學試卷(解析版) 題型:解答題

對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個函數(shù)在數(shù)學本身和生產(chǎn)實踐中都有廣泛的應用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關的另一個函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個常用函數(shù).
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個函數(shù)在數(shù)學本身和生產(chǎn)實踐中都有廣泛的應用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關的另一個函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個常用函數(shù).
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

同步練習冊答案