精英家教網 > 高中數學 > 題目詳情

如圖,直線AB過圓心O,交于F(不與B重合),直線相切于C,交AB于E,且與AF垂直,垂足為G,連結AC

求證:(1);(2)

(1)證明過程詳見解析;(2)證明過程詳見解析

解析試題分析:本題主要考查以圓為背景考查角相等的證明及相似三角形等基礎知識,考查學生的轉化能力和推理論證能力 第一問,通過AB為直徑,所以為直角,又因為GC切⊙O于C,所以,所以得證;第二問,利用EC與⊙O相切,得出,所以三角形相似得相似,利用相似三角形的性質,得出比例值,化簡即可,得證
試題解析:(1)連結,∵是直徑,
,∴
,∴
              5分
(2)連結,∵,  ∴
,   ∴
,∴      10分

考點:1 圓的切線的性質;2 相似三角形 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,PA為⊙O的切線,A為切點,PBC是過點O的割線,PA=10,PB=5。

求:(1)⊙O的半徑;
(2)s1n∠BAP的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,若BE∥CF∥DG,AB∶BC∶CD=1∶2∶3,CF=12  cm,求BE,DG的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知在⊙O中,P是弦AB的中點,過點P作半徑OA的垂線,垂足是點E.分別交⊙O于C、D兩點.

求證:PC·PD=AE·AO.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知Rt△ABC的周長為48 cm,一銳角平分線分對邊為3∶5兩部分.

(1)求直角三角形的三邊長;
(2)求兩直角邊在斜邊上的射影的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在?ABCD中,設E和F分別是邊BC和AD的中點,BF和DE分別交AC于P、Q兩點.

求證:AP=PQ=QC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,AB為⊙O的直徑,直線CD與⊙O相切于EAD垂直CDD,BC垂直CDC,EF垂直ABF,連接AE,BE.證明:

(1)∠FEB=∠CEB;
(2)EF2AD·BC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,A、B是兩圓的交點,AC是小圓的直徑,D和E分別是CA和CB的延長線與大圓的交點,已知AC=4,BE=10,且BC=AD,求DE的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,、是圓的半徑,且是半徑上一點:延長交圓于點,過作圓的切線交的延長線于點.求證:.

查看答案和解析>>

同步練習冊答案