【題目】若方程有實數(shù)根,則稱為函數(shù)的一個不動點.已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)當(dāng)時是否存在不動點?并證明你的結(jié)論;
(2)若,求證有唯一不動點.
【答案】(1)不存在不動點;證明見解析(2)證明見解析
【解析】
(1)將問題轉(zhuǎn)化為求方程的根,構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性以及最小值,即可容易證明;
(2)根據(jù)不動點的定義,結(jié)合(1)中的思路,即可容易求證.
(1)當(dāng)時,不存在不動點.
證明:由可得:,
令,,
則,
∵,∴
當(dāng)時,,在上單調(diào)遞減,
當(dāng)時,,在上單調(diào)遞增,
所以.所以方程無實數(shù)根
故不存在不動點.
(2)當(dāng)時,,,
則,
再令,∴
當(dāng)時,,在上單調(diào)遞減,
當(dāng)時,,在上單調(diào)遞增,
∴
故當(dāng)時,,在上單調(diào)遞減,
當(dāng)時,,在上單調(diào)遞增,
所以.
所以有唯一實數(shù)根,
故有唯一不動點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中“勾股容方”問題:“今有勾五步,股十二步,問勾中容方幾何?”魏晉時期數(shù)學(xué)家劉徽在其《九章算術(shù)注》中利用出入相補原理給出了這個問題的一般解法:如圖1,用對角線將長和寬分別為和的矩形分成兩個直角三角形,每個直角三角形再分成一個內(nèi)接正方形(黃)和兩個小直角三角形(朱、青).將三種顏色的圖形進行重組,得到如圖2所示的矩形.該矩形長為,寬為內(nèi)接正方形的邊長.由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設(shè)為斜邊的中點,作直角三角形的內(nèi)接正方形對角線,過點作于點,則下列推理正確的是( )
①由圖1和圖2面積相等得;
②由可得;
③由可得;
④由可得.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)當(dāng)時,求函數(shù)圖象在處的切線方程;
(2)若對任意,不等式恒成立,求的取值范圍;
(3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),,為曲線上的一動點.
(I)求動點對應(yīng)的參數(shù)從變動到時,線段所掃過的圖形面積;
(Ⅱ)若直線與曲線的另一個交點為,是否存在點,使得為線段的中點?若存在,求出點坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=16cosθ.
(1)把曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求C1與C2交點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù)滿足,當(dāng)時,則關(guān)于函數(shù)有如下四個結(jié)論:①為偶函數(shù);②的圖象關(guān)于直線對稱;③方程有兩個不等實根;④其中所有正確結(jié)論的編號是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對數(shù)的底)上有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是上的偶函數(shù),且,若在上單調(diào)遞減,則函數(shù)在上是( )
A. 增函數(shù) B. 減函數(shù) C. 先增后減的函數(shù) D. 先減后增的函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.
1求分數(shù)在的頻數(shù)及全班人數(shù);
2求分數(shù)在之間的頻數(shù),并計算頻率分布直方圖中間矩形的高;
3若要從分數(shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分數(shù)在之間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com