9.已知△ABC的周長(zhǎng)為26且點(diǎn)A,B的坐標(biāo)分別是(-6,0),(6,0),則點(diǎn)C的軌跡方程為$\frac{{x}^{2}}{49}+\frac{{y}^{2}}{13}$=1(x≠±7).

分析 由題意可得|BC|+|AC|=14>AB,故頂點(diǎn)A的軌跡是以A、B為焦點(diǎn)的橢圓,除去與x軸的交點(diǎn),利用橢圓的定義和簡(jiǎn)單性質(zhì) 求出a、b 的值,即得頂點(diǎn)C的軌跡方程.

解答 解:由題意可得|BC|+|AC|=14>AB,故頂點(diǎn)A的軌跡是以A、B為焦點(diǎn)的橢圓,除去與x軸的交點(diǎn).
∴2a=14,c=6,∴b=$\sqrt{13}$,故頂點(diǎn)C的軌跡方程為$\frac{{x}^{2}}{49}+\frac{{y}^{2}}{13}$=1(x≠±7).
故答案為$\frac{{x}^{2}}{49}+\frac{{y}^{2}}{13}$=1(x≠±7).

點(diǎn)評(píng) 本題考查橢圓的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用.解題的易錯(cuò)點(diǎn):最后不檢驗(yàn)滿足方程的點(diǎn)是否都在曲線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)離散型隨機(jī)變量ξ的分布列如下,則Dξ等于( 。
ξ102030
P0.6a0.1
A.55B.30C.15D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知直角坐標(biāo)系中的點(diǎn)A(-1,0),B(3,2),寫(xiě)出求直線AB的方程的一個(gè)算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)命題p:$\frac{m-2}{m-3}$≤$\frac{2}{3}$;命題 q:關(guān)于x的不等式x2-4x+m2≤0的解集是空集,若“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知m,n表示兩條不同的直線,α表示平面,則下列說(shuō)法正確的序號(hào)是②.
①若m∥α,n∥α,則m∥n;    
②若m⊥α,n?α,則m⊥n;
③若m⊥α,m⊥n,則n∥α;      
④若m∥α,m⊥n,則n⊥α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若P是雙曲線x2-y2=λ(λ>0)左支上的一點(diǎn),F(xiàn)1、F2是左、右兩個(gè)焦點(diǎn),若|PF2|=6,PF1與雙曲線的實(shí)軸垂直,則λ的值是( 。
A.3B.4C.1.5D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)P:“關(guān)于x的不等式${x^2}-ax+a+\frac{5}{4}>0$的解集為R”,q:“方程$\frac{x^2}{4a+7}+\frac{y^2}{a-3}=1$表示雙曲線”.
(1)若q為真,求實(shí)數(shù)a的取值范圍;
(2)若p∧q為假,p∨q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知F為拋物線C:y2=2px(p>0)的交點(diǎn),直線l1:y=-x與拋物線C的一個(gè)交點(diǎn)橫坐標(biāo)為8.
(1)求拋物線C的方程;
(2)不過(guò)原點(diǎn)的直線l2與l1垂直,且與拋物線交于不同的兩點(diǎn)A、B,若線段AB的中點(diǎn)為P,且|OP|=$\frac{1}{2}$|AB|,求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.蘇果超市特定在2017年元旦期間舉行特大優(yōu)惠活動(dòng),凡購(gòu)買(mǎi)商品達(dá)到88元者,可獲得一次抽獎(jiǎng)機(jī)會(huì),已知抽獎(jiǎng)工具是一個(gè)圓面轉(zhuǎn)盤(pán),被分成6個(gè)扇形塊,分別記為1,2,3,4,5,6,且其面積依次成公比為3的等比數(shù)列,指針箭頭指在最小1區(qū)域內(nèi)時(shí),就中“一等獎(jiǎng)”,則消費(fèi)達(dá)到88元者沒(méi)有抽中一等獎(jiǎng)的概率是(  )
A.$\frac{1}{364}$B.$\frac{1}{121}$C.$\frac{120}{121}$D.$\frac{363}{364}$

查看答案和解析>>

同步練習(xí)冊(cè)答案