已知關(guān)于x的不等式k•4x-2x+1+6k<0
(1)若不等式的解集A={x|1<x<log23},求實數(shù)k的值;
(2)若不等式的解集A?{x|1<x<log23},求實數(shù)k的取值范圍;
(3)若不等式的解集A⊆{x|1<x<log23},求實數(shù)k的取值范圍;
(4)若不等式的解集A∩{x|1<x<log23}≠?,求實數(shù)k的取值范圍.
(1)由已知得,2和3是相應(yīng)方程kt2-2t+6k=0的兩根且k>0,k=
2
5

(2)∵A?{x|1<x<log23},∴A?{x|2<t<3}且A中的元素t>0
令f(t)=kt2-2t+6k,
當(dāng)k>0時,則有 f(2)≤0,f(3)≤0
解得0<k≤
2
5

當(dāng)k=0時,A={t|t>0}顯然滿足條件
當(dāng)k<0時,由于x=
1
k
<0
,則只要
f(2)≤0
f(3)<0
,此時可得k<0
綜上可得a
2
5

(3)對應(yīng)方程的△=4-24k2,令f(t)=kt2-2t+6k
則原問題等價于△≤0或 f(2)≥0,f(3)≥0,2≤
1
k
≤3

又k>0,∴k≥
6
6

由 f(2)≥0,f(3)≥0,2≤
1
k
≤3解得
2
5
≤k≤
1
2

綜上,符合條件的k的取值范圍是[
2
5
,+∞)
(4)當(dāng)A∩{t|2<t<3}=∅時可得
若k=0,A={t|t>0},符合條件
若k>0可得
f(2)≥0
f(3)≥0
1
k
≤2
f(2)≥0
f(3)≥0
1
k
≥3

解不等式組可得,k≥
1
2
或k不存在
即k
1
2
時,A∩{t|2<t<3}=∅
0<k<
1
2
時A∩{t|2<t<3}≠∅
若k<0可得,結(jié)合二次函數(shù)的圖象可知A∩{t|2<t<3}≠∅
綜上可得,k<
1
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式
k(1-x)x-2
+1<0的解集為空集,求實數(shù)k的取值或取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式k•4x-2x+1+6k<0
(1)若不等式的解集A={x|1<x<log23},求實數(shù)k的值;
(2)若不等式的解集A?{x|1<x<log23},求實數(shù)k的取值范圍;
(3)若不等式的解集A⊆{x|1<x<log23},求實數(shù)k的取值范圍;
(4)若不等式的解集A∩{x|1<x<log23}≠?,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于x的不等式k•4x-2x+1+6k<0
(1)若不等式的解集A={x|1<x<log23},求實數(shù)k的值;
(2)若不等式的解集A?{x|1<x<log23},求實數(shù)k的取值范圍;
(3)若不等式的解集A⊆{x|1<x<log23},求實數(shù)k的取值范圍;
(4)若不等式的解集A∩{x|1<x<log23}≠?,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的不等式
k(1-x)
x-2
+1<0的解集為空集,求實數(shù)k的取值或取值范圍.

查看答案和解析>>

同步練習(xí)冊答案