已知拋物線C1:y=x2+2x和C2:y=-x2+a,如果直線l同時(shí)是C1和C2的切線,稱l是C1和C2的公切線.公切線上兩個(gè)切點(diǎn)間的線段,稱為公切線段.
(1)問(wèn)a取何值時(shí),拋物線C1和C2有且僅有一條公切線?寫出此公切線的方程;
(2)若拋物線C1與C2有兩條公切線,證明相應(yīng)的兩條公切線段互相平分
(1)函數(shù)y=x2+2x的導(dǎo)數(shù)為y′=2x+2,故曲線C1在點(diǎn)P(x1,+2x1)的切線方程為 y=(2x1+2)x- ① 同理,曲線C2在點(diǎn)Q(x2,-+a)的切線方程為 y=-2x2x++a 、 由于C1和C2僅有一條公切線,所以①、②為同一方程, 故有,消去x2 得2+2x1+1+a=0 由D=0,得a=-,此時(shí),x1=-,P與Q重合. 故當(dāng)a=-時(shí),拋物線C1和C2有且僅有一條公切線,其公切線方程為y=x-. (2)由(1)知,當(dāng)a<-時(shí),C1與C2有兩條公切線.設(shè)一條公切線上的切點(diǎn)為P(x1,y1),Q(x2,y2),其中P在C1上,Q在C2上,則有x1+x2=-1,y1+y2=(+2x1)+(-+a)=+2x1 -(x1+1)2+a=-1+a 所以線段PQ的中點(diǎn)為(,). 同理另一條公切線段P′Q′的中點(diǎn)也是(,) 故公切線段PQ和P′Q′互相平分. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、x=
| ||
B、x=-
| ||
C、x=
| ||
D、x=-
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
y2 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
2 |
y2 |
a2 |
3 |
4 |
1 |
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com