【題目】在直角坐標系xOy中,直線l的方程是y=8,圓C的參數(shù)方程是 (φ為參數(shù)).以O為極點,x軸的非負半軸為極軸建立極坐標系. (Ⅰ)求直線l和圓C的極坐標方程;
(Ⅱ)射線OM:θ=α(其中 )與圓C交于O、P兩點,與直線l交于點M,射線ON: 與圓C交于O、Q兩點,與直線l交于點N,求 的最大值.
【答案】解:(Ⅰ)∵直線l的方程是y=8,∴直線l的極坐標方程是ρsinθ=8.
∵圓C的參數(shù)方程是 (φ為參數(shù)),
∴圓C的普通方程分別是x2+(y﹣2)2=4,
即x2+y2﹣4y=0,
∴圓C的極坐標方程是ρ=4sinθ.
(Ⅱ)依題意得,點P,M的極坐標分別為 和 ,
∴|OP|=4sinα,|OM|= ,
從而 = = .
同理, = .
∴ = = ,
故當 時, 的值最大,該最大值是
【解析】(Ⅰ)由直線的直角坐標方程能求出直線l的極坐標方程,由圓C的參數(shù)方程,能求出圓C的普通方程,從而能求出圓C的極坐標方程.(Ⅱ)求出點P,M的極坐標,從而 = , = ,由此能求出 的最大值是 .
科目:高中數(shù)學 來源: 題型:
【題目】給出以下命題:
⑴“ ”是“曲線 表示橢圓”的充要條件
⑵命題“若 ,則 ”的否命題為:“若 ,則 ”
⑶ 中, . 是斜邊 上的點, .以 為起點任作一條射線 交 于 點,則 點落在線段 上的概率是
⑷設隨機變量 服從正態(tài)分布 ,若 ,則
則正確命題有( )個
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l: (t為參數(shù)),曲線C1: (θ為參數(shù)). (Ⅰ)設l與C1相交于A,B兩點,求|AB|;
(Ⅱ)若把曲線C1上各點的橫坐標壓縮為原來的 倍,縱坐標壓縮為原來的 倍,得到曲線C2 , 設點P是曲線C2上的一個動點,求它到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《中國詩詞大會》(第二季)亮點頗多,十場比賽每場都有一首特別設計的開場詩詞,在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《將進酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )
A.144種
B.288種
C.360種
D.720種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,四邊形ABCD是菱形,且∠A=60°,AB=2,E為AB的中點,將四邊形EBCD沿DE折起至EDC1B1 , 如圖2.
(Ⅰ) 求證:平面ADE⊥平面AEB1;
(Ⅱ) 若二面角A﹣DE﹣C1的大小為 ,求三棱錐C1﹣AB1D的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】曲線C是平面內與兩個定點F1(﹣2,0),F(xiàn)2(2,0)的距離之積等于9的點的軌跡.給出下列命題: ①曲線C過坐標原點;
②曲線C關于坐標軸對稱;
③若點P在曲線C上,則△F1PF2的周長有最小值10;
④若點P在曲線C上,則△F1PF2面積有最大值 .
其中正確命題的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),其中0≤α<π.在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C1:ρ=4cosθ.直線l與曲線C1相切.
(1)將曲線C1的極坐標方程化為直角坐標方程,并求α的值.
(2)已知點Q(2,0),直線l與曲線C2:x2+ =1交于A,B兩點,求△ABQ的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的三個內角A、B、C所對的邊長分別是a、b、c,且 ,若將函數(shù)f(x)=2sin(2x+B)的圖象向右平移 個單位長度,得到函數(shù)g(x)的圖象,則g(x)的解析式為( )
A.
B.
C.2sin2x
D.2cos2x
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com