已知函數(shù)
(1)若函數(shù)在[1,2]上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)令,是否存在實(shí)數(shù),當(dāng)時(shí),函數(shù)的最小值是3,若存在,求出的取值;若不存在,說(shuō)明理由.
(1). (2)存在實(shí)數(shù),使得當(dāng)時(shí),函數(shù)的最小值是3.
【解析】(1) 由題意得在[1,2]上恒成立,然后轉(zhuǎn)化為在[1,2]上恒成立,再利用二次函數(shù)的性質(zhì)求解即可.
(2) 本小題屬于存在性問(wèn)題,應(yīng)先假設(shè)存在實(shí)數(shù),使有最小值3,然后利用導(dǎo)數(shù)求其最小值,然后建立關(guān)于a的方程求解即可驗(yàn)證是否存在
(1)由題意得在[1,2]上恒成立,令
,有,得,得.
(2)假設(shè)存在實(shí)數(shù),使有最小值3,由題知
,
當(dāng)時(shí),,在上單調(diào)遞減,,
(舍去)
當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,所以
,所以,滿(mǎn)足條件;
當(dāng)時(shí),,在上單調(diào)遞減,,
(舍去).
綜上,存在實(shí)數(shù),使得當(dāng)時(shí),函數(shù)的最小值是3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北衡水中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱(chēng)為函數(shù)的保值區(qū)間。設(shè),試問(wèn)函數(shù)在上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),
(1)若函數(shù)在[l,+∞]上是增函數(shù),求實(shí)數(shù)的取值范圍。
(2)若=一是的極值點(diǎn),求在[l,]上的最大值:
(3)在(2)的條件下,是否存在實(shí)數(shù)b,使得函數(shù)g()=b的圖像與函的圖像恰有3個(gè)交點(diǎn),若存在,求出實(shí)數(shù)b的取值范圍:若不存在,試說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年廣東省韶關(guān)市田家炳中學(xué)、乳源高級(jí)中學(xué)聯(lián)考高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年廣東省華南師大附中高三綜合測(cè)試數(shù)學(xué)試卷3(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com