(1)某工廠準(zhǔn)備在倉庫的一側(cè)建立一個(gè)矩形儲(chǔ)料場(chǎng)(如圖1),現(xiàn)有50米長(zhǎng)的鐵絲網(wǎng),如果用它來圍成這個(gè)儲(chǔ)料場(chǎng),那么長(zhǎng)和寬各是多少時(shí),這個(gè)儲(chǔ)料場(chǎng)的面積最大?并求出這個(gè)最大的面積.
(2)如圖2,已知AB、DE是圓O的直徑,AC是弦,AC∥DE,求證CE=EB.
(3)如圖3所示的棱長(zhǎng)為a的正方體中:①求CD1和AB所成的角的度數(shù);②求∠B1BD1的正弦值.
精英家教網(wǎng)
分析:(1)由圖可知儲(chǔ)料場(chǎng)是個(gè)矩形,設(shè)出其長(zhǎng)為x寬為y,根據(jù)條件2x+y=50,用y表示出x,然后用配方法求出其最大值;
(2)根據(jù)中位線定理可得EB=
1
2
CB,然后再結(jié)合條件CB=CE+EB,進(jìn)行證明;
(3)①CD1和AB所成的角等于∠D1CD,是個(gè)等腰三角形進(jìn)而求解;②利用正弦三角函數(shù)的定義和性質(zhì)進(jìn)行求解.
解答:(1)解:設(shè)矩形儲(chǔ)料場(chǎng)的長(zhǎng)為x寬為y,則因其一面靠墻,所以應(yīng)有2x+y=50,即y=50-2x,設(shè)儲(chǔ)料場(chǎng)的面積為S,
則S=xy=x(50-2x)
=-2x2+50x
=-2(x-12.5)2+312.5
∴當(dāng)x=12.5時(shí),儲(chǔ)料場(chǎng)的面積最,S=312.5米2此時(shí)y=25米.

(2)解:證:∵AC∥DE,∴∠1=∠2.
∴EB=
1
2
CB,CB=2EB
但CB=CE+EB,
∴2EB=CE+EB,CE=EB,CE=EB.

(3)解:①CD1和AB所成的角等于∠D1CD,
∵△D1CD是等腰三角形,∴∠D1CD=45°.
②∵D1B1=
2
a,D1B=
3
a,
sin∠B1BD1=
D1B1
D1B
=
6
3
點(diǎn)評(píng):(1)是一道實(shí)際應(yīng)用題,考查二次函數(shù)的最值問題,主要配方法是高考常用的方法;
(2)考查圓內(nèi)簡(jiǎn)單的幾何關(guān)系,利用三角形中位線定理進(jìn)行求解;
(3)是一道簡(jiǎn)單的立體幾何問題,解題的關(guān)鍵是找出所求的角,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某先生居住在城鎮(zhèn)的A處,準(zhǔn)備開車到單位B處上班,若該地各路段發(fā)生堵車事件都是獨(dú)立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率,如圖.( 例如:A→C→D算作兩個(gè)路段:路段AC發(fā)生堵車事件的概率為
1
10
,路段CD發(fā)生堵車事件的概率為
1
15
).
(1)請(qǐng)你為其選擇一條由A到B的路線,使得途中發(fā)生堵車事件的概率最小;
(2)若記ξ路線A→(3)C→(4)F→(5)B中遇到堵車次數(shù)為隨機(jī)變量ξ,求ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建一倉庫,設(shè)AB=y km,并在公路同側(cè)建造邊長(zhǎng)為x km的正方形無頂中轉(zhuǎn)站CDEF(其中邊EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且∠ABC=60°.
(1)求y關(guān)于x的函數(shù)解析式;
(2)如果中轉(zhuǎn)站四周圍墻造價(jià)為1萬元/km,兩條道路造價(jià)為3萬元/km,問:x取何值時(shí),該公司建中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)某工廠準(zhǔn)備在倉庫的一側(cè)建立一個(gè)矩形儲(chǔ)料場(chǎng)(如圖1),現(xiàn)有50米長(zhǎng)的鐵絲網(wǎng),如果用它來圍成這個(gè)儲(chǔ)料場(chǎng),那么長(zhǎng)和寬各是多少時(shí),這個(gè)儲(chǔ)料場(chǎng)的面積最大?并求出這個(gè)最大的面積.
(2)如圖2,已知AB、DE是圓O的直徑,AC是弦,AC∥DE,求證CE=EB.
(3)如圖3所示的棱長(zhǎng)為a的正方體中:①求CD1和AB所成的角的度數(shù);②求∠B1BD1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:1977年天津市高考數(shù)學(xué)試卷(解析版) 題型:解答題

(1)某工廠準(zhǔn)備在倉庫的一側(cè)建立一個(gè)矩形儲(chǔ)料場(chǎng)(如圖1),現(xiàn)有50米長(zhǎng)的鐵絲網(wǎng),如果用它來圍成這個(gè)儲(chǔ)料場(chǎng),那么長(zhǎng)和寬各是多少時(shí),這個(gè)儲(chǔ)料場(chǎng)的面積最大?并求出這個(gè)最大的面積.
(2)如圖2,已知AB、DE是圓O的直徑,AC是弦,AC∥DE,求證CE=EB.
(3)如圖3所示的棱長(zhǎng)為a的正方體中:①求CD1和AB所成的角的度數(shù);②求∠B1BD1的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案