【題目】已知{an}是等比數(shù)列,an>0,a3=12,且a2 , a4 , a2+36成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè){bn}是等差數(shù)列,且b3=a3 , b9=a5 , 求b3+b5+b7+…+b2n+1 .
【答案】
(1)解:設(shè)等比數(shù)列{an}的公比為q,
∵an>0,可得q>0.
∵a2,a4,a2+36成等差數(shù)列.∴2a4=a2+a2+36,
∴2a3q=2 +36,即2×12q=2× +36,化為:2q2﹣3q﹣2=0,
解得q=2.
∴ =12,解得a1=3.
∴an=3×2n﹣1.
(2)解:由(1)可得:
b3=a3=12,b9=a5=3×24=48.
設(shè)等差數(shù)列{bn}的公差為d,則b1+2d=12,b1+8d=48,
解得b1=0,d=6.
∴bn=6(n﹣1).
∴b2n+1=12n.
∴b3+b5+b7+…+b2n+1=12× =6n2+6n
【解析】(1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.(2)利用等比數(shù)列與等差數(shù)列的通項(xiàng)公式、求和公式即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù) 圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 ,縱坐標(biāo)不變,再向右平移 個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,則下列說(shuō)法正確的是( )
A.函數(shù)g(x)的一條對(duì)稱(chēng)軸是
B.函數(shù)g(x)的一個(gè)對(duì)稱(chēng)中心是
C.函數(shù)g(x)的一條對(duì)稱(chēng)軸是
D.函數(shù)g(x)的一個(gè)對(duì)稱(chēng)中心是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]時(shí),求f(x)的值域;
(2)當(dāng)x∈[﹣1,1]時(shí),求f(x)的最小值h(a);
(3)是否存在實(shí)數(shù)m、n,同時(shí)滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域?yàn)閇m,n]時(shí),其值域?yàn)閇m2 , n2],若存在,求出m、n的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四面體ABCD的頂點(diǎn)都在同一個(gè)球的球面上,BC= ,BD=4,且滿足BC⊥BD,AC⊥BC,AD⊥BD.若該三棱錐的體積為 ,則該球的球面面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個(gè)全等的直角三角形和中間一個(gè)小正方形拼成一個(gè)大的正方形,若圖中直角三角形兩銳角分別為α、β,且小正方形與大正方形面積之比為4:9,則cos(α﹣β)的值為( )
A.
B.
C.
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l: (m為常數(shù)).
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),當(dāng)|AB|=4時(shí),求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD折疊,使得平面ABD丄平面CBD,若AM丄平面ABD,且AM=
(1)求證:DM⊥平面ABC;
(2)求二面角C﹣BM﹣D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x﹣2)2+(y﹣1)2=1,點(diǎn)P為直線x+2y﹣9=0上一動(dòng)點(diǎn),過(guò)點(diǎn)P向圓C引兩條切線PA,PB,其中A,B為切點(diǎn),則 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形ABEF所在的平面與△ABC所在的平面相互垂直,AB=4,BC= ,BC⊥BE,∠ABE= .
(1)求證:BC⊥平面ABEF;
(2)求平面ACF與平面BCE所成的銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com