已知橢圓的離心率為,橢圓的的一個頂點和兩個焦點構成的三角形的面積為4,
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于A, B兩點,若點M(, 0),求證為定值.
(1);(2)參考解析

試題分析:(1)要求橢圓的方程需要找到關于的兩個等式即可.由離心率可以得到一個,又由橢圓的的一個頂點和兩個焦點構成的三角形的面積為4,可以得到一個等式,即可求出橢圓的方程.
(2)由線與橢圓C交于A, B兩點,若點M(, 0),所以要表示出的結果,通過直線方程與橢圓方程聯(lián)立即可得一個二次方程.寫出韋達定理,再根據(jù)向量與向量的數(shù)量積所得到的關系式即可得到一個定值.
試題解析:(1)因為滿足,,
.解得,則橢圓方程為.         4分
(2)把直線代入橢圓的方程得
解得,

=
=
==
所以為定值.         12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓C的中心在原點,焦點在x軸上,離心率為,且過點,點A、B分別是橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.

(1)求橢圓C的方程;
(2)求點P的坐標;
(3)設M是直角三角PAF的外接圓圓心,求橢圓C上的點到點M的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點分別是橢圓的左、右焦點, 點在橢圓上上.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設直線均與橢圓相切,試探究在軸上是否存在定點,點的距離之積恒為1?若存在,請求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:的一個焦點是(1,0),兩個焦點與短軸的一個端點構成等邊三角形.
(1)求橢圓C的方程;
(2)過點Q(4,0)且不與坐標軸垂直的直線l交橢圓C于A、B兩點,設點A關于x軸的
對稱點為A1.求證:直線A1B過x軸上一定點,并求出此定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在坐標原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OAl的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若θ是任意實數(shù),則方程x2+4y2=1所表示的曲線一定不是 (   )
A.圓B.雙曲線C.直線D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線與曲線的交點個數(shù)是       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過點且和拋物線相切的直線方程為                  .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知過拋物線焦點的直線與拋物線相交于兩點,若,則    .

查看答案和解析>>

同步練習冊答案