設(shè)雙曲線
x2
m2
-
y2
n2
=1(m>0,n>0)
的焦距為
7
,一條漸近線方程為y=
6
x
,則此雙曲線的方程為(  )
分析:由題意可得m2+n2=(
7
2
)2
,①
n
m
=
6
②,聯(lián)立解之即可.
解答:解:由題意可得m2+n2=(
7
2
)2
,①
又雙曲線的漸近線為y=±
n
m
x
,故可得
n
m
=
6
②,
綜合①②可得m=
1
2
,n=
6
2
,即m2=
1
4
,n2=
3
2

故方程為
x2
1
4
-
y2
3
2
=1
,即4x2-
2x2
3
=1
,
故選D
點評:本題考查雙曲線的標準方程,涉及待定系數(shù)法的應用,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•安慶三模)已知焦點在x軸上的橢圓C1
x2
a2
+
y2
12
=1和雙曲線C2
x2
m2
-
y2
n2
=1的離心率互為倒數(shù),它們在第一象限交點的坐標為(
4
10
5
,
6
5
5
),設(shè)直線l:y=kx+m(其中k,m為整數(shù)).
(1)試求橢圓C1和雙曲線C2 的標準方程;
(2)若直線l與橢圓C1交于不同兩點A、B,與雙曲線C2交于不同兩點C、D,問是否存在直線l,使得向量
AC
+
BD
=
0
,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e,且b,e,
1
3
為等比數(shù)列,曲線y=8-x2恰好過橢圓的焦點.
(1)求橢圓C1的方程;
(2)設(shè)雙曲線C2
x2
m2
-
y2
n2
=1
的頂點和焦點分別是橢圓C1的焦點和頂點,設(shè)O為坐標原點,點A,B分別是C1和C2上的點,問是否存在A,B滿足
OA
=
1
2
OB
.請說明理由.若存在,請求出直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)向量
a
b
的夾角為θ,
a
=(3,3),2
b
-
a
=(-1,1)
,若直線2x-y-8=0沿向量
b
平移,所得直線過雙曲線
x2
m2
-
y2
22
=1
的右焦點,(i)cosθ=
3
10
10
3
10
10
;(ii)雙曲線
x2
m
-
y2
22
=1
的離心率e=
2
3
3
2
3
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e,且b,e,
1
3
為等比數(shù)列,曲線y=8-x2恰好過橢圓的焦點.
(1)求橢圓C1的方程;
(2)設(shè)雙曲線C2
x2
m2
-
y2
n2
=1
的頂點和焦點分別是橢圓C1的焦點和頂點,設(shè)O為坐標原點,點A,B分別是C1和C2上的點,問是否存在A,B滿足
OA
=
1
2
OB
.請說明理由.若存在,請求出直線AB的方程.

查看答案和解析>>

同步練習冊答案