【題目】在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數(shù)方程為(為參數(shù)),與交于,兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)設點;若、、成等比數(shù)列,求的值
【答案】(1) 曲線的直角坐標方程為,直線的普通方程為 ; (2)
【解析】
(1)由極坐標與直角坐標的互化公式和參數(shù)方程與普通方程的互化,即可求解曲線的直角坐標方程和直線的普通方程;
(2)把的參數(shù)方程代入拋物線方程中,利用韋達定理得,,可得到,根據(jù)因為,,成等比數(shù)列,列出方程,即可求解.
(1)由題意,曲線的極坐標方程可化為,
又由,可得曲線的直角坐標方程為,
由直線的參數(shù)方程為(為參數(shù)),消去參數(shù),得,
即直線的普通方程為;
(2)把的參數(shù)方程代入拋物線方程中,得,
由,設方程的兩根分別為,,
則,,可得,.
所以,,.
因為,,成等比數(shù)列,所以,即,
則,解得解得或(舍),
所以實數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】橢圓中心為坐標原點O,對稱軸為坐標軸,且過M(2, ) ,N(,1)兩點,
(I)求橢圓的方程;
(II)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x),若a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“可構造三角形函數(shù)”.已知函數(shù)f(x)=是“可構造三角形函數(shù)”,則實數(shù)t的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列{an}的前n項和為Sn,a2+a15=17,S10=55.數(shù)列{bn}滿足an=log2bn.
(1)求數(shù)列{bn}的通項公式;
(2)若數(shù)列{an+bn}的前n項和Tn滿足Tn=S32+18,求n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著改革開放的不斷深入,祖國不斷富強,人民的生活水平逐步提高,為了進一步改善民生,年月日起我國實施了個人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個稅起征點為元;(2)每月應納稅所得額(含稅)收入個稅起征點專項附加扣除;(3)專項附加扣除包括①贍養(yǎng)老人費用②子女教育費用③繼續(xù)教育費用④大病醫(yī)療費用等,其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除元②子女教育費用:每個子女每月扣除元
新個稅政策的稅率表部分內(nèi)容如下:
級數(shù) | 一級 | 二級 | 三級 | 四級 | |
每月應納稅所得額(含稅) | 不超過元的部分 | 超過元至元的部分 | 超過元至元的部分 | 超過元至元的部分 | |
稅率 |
(1)現(xiàn)有李某月收入元,膝下有一名子女,需要贍養(yǎng)老人,(除此之外,無其它專項附加扣除)請問李某月應繳納的個稅金額為多少?
(2)現(xiàn)收集了某城市名年齡在歲到歲之間的公司白領的相關資料,通過整理資料可知,有一個孩子的有人,沒有孩子的有人,有一個孩子的人中有人需要贍養(yǎng)老人,沒有孩子的人中有人需要贍養(yǎng)老人,并且他們均不符合其它專項附加扣除(受統(tǒng)計的人中,任何兩人均不在一個家庭).若他們的月收入均為元,試求在新個稅政策下這名公司白領的月平均繳納個稅金額為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與拋物線:交于,兩點,且的面積為16(為坐標原點).
(1)求的方程.
(2)直線經(jīng)過的焦點且不與軸垂直,與交于,兩點,若線段的垂直平分線與軸交于點,試問在軸上是否存在點,使為定值?若存在,求該定值及的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2BC=2,點M為DC的中點,將△ADM沿AM折起,使得平面△ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)求點C到平面BDM的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年3月2日,昌平 “回天”地區(qū)開展了種不同類型的 “三月雷鋒月,回天有我”社會服務活動. 其中有種活動既在上午開展、又在下午開展, 種活動只在上午開展,種活動只在下午開展 . 小王參加了兩種不同的活動,且分別安排在上、下午,那么不同安排方案的種數(shù)是___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圍建一個面積為40平方米的矩形場地,要求矩形場地的一面利用舊墻(舊墻足夠長),利用的舊墻需維修,其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2米的進出口,如圖所示,已知舊墻的維修費用為5元/米,新墻的造價為20元/米,設利用的舊墻的長度為(單位:米),修建此矩形場地圍墻的總費用為(單位:元)
(1)將表示為的函數(shù);
(2)試確定,使修建此矩形場地圍墻的總費用最小,并求出最小總費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com