【題目】已知:函數(shù)(其中常數(shù)).
(Ⅰ)求函數(shù)的定義域及單調(diào)區(qū)間;
(Ⅱ)若存在實(shí)數(shù),使得不等式成立,求a的取值范圍
【答案】(1)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,
(2)
【解析】
(1)函數(shù)的定義域?yàn)?/span>………………………………………………1分
……………………………………………3分
由,解得,由,解得且
的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為和………5分
(2)由題意可知,當(dāng)且僅當(dāng),且在上的最小值小于或等于時(shí),存在實(shí)數(shù),使得不等式成立 …………………………………6分
若即時(shí)
0 | + | ||
單減 | 極小值 | 單增 |
在上的最小值為,則,得………9分
若,即時(shí),在上單調(diào)遞減,則在上的最小值為,由,得(舍) ………………………………………11分
綜上所述,……………………………………………………………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,過且垂直于軸的焦點(diǎn)弦的弦長為,過的直線交橢圓于,兩點(diǎn),且的周長為.
(1)求橢圓的方程;
(2)已知直線,互相垂直,直線過且與橢圓交于點(diǎn),兩點(diǎn),直線過且與橢圓交于,兩點(diǎn).求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若不等式時(shí)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省的一個(gè)氣象站觀測點(diǎn)在連續(xù)4天里記錄的AQI指數(shù)M與當(dāng)天的空氣水平可見度(單位:cm)的情況如表1:
900 | 700 | 300 | 100 | |
0.5 | 3.5 | 6.5 | 9.5 |
該省某市2017年11月份AQI指數(shù)頻數(shù)分布如表2:
頻數(shù)(天) | 3 | 6 | 12 | 6 | 3 |
<>(1)設(shè),若與之間是線性關(guān)系,試根據(jù)表1的數(shù)據(jù)求出關(guān)于的線性回歸方程;
(2)小李在該市開了一家洗車店,洗車店每天的平均收入與AQI指數(shù)存在相關(guān)關(guān)系如表3:
日均收入(元) | -2000 | -1000 | 2000 | 6000 | 8000 |
根據(jù)表3估計(jì)小李的洗車店2017年11月份每天的平均收入.
附參考公式:,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于兩點(diǎn),且設(shè)定點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等腰直角三角形中,,點(diǎn)是邊上異于的一點(diǎn),光線從點(diǎn)出發(fā),經(jīng)反射后又回到原點(diǎn),光線經(jīng)過的重心.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,請求的重心的坐標(biāo);
(2)求點(diǎn)的坐標(biāo);
(3)求的周長及面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)某校夏令營有3名男同學(xué)A、B、C和3名女同學(xué)X、Y、Z,其年級情況如下表:
一年級 | 二年級 | 三年級 | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識競賽(每人被選到的可能性相同).
①用表中字母列舉出所有可能的結(jié)果;
②設(shè)M為事件“選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)”,求事件M發(fā)生的概率.
(2)節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈.這兩串彩燈的第一次閃亮相互獨(dú)立,且都在通電后的4秒內(nèi)任一時(shí)刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮.那么這兩串彩燈同時(shí)通電后,它們第一次閃亮的時(shí)刻相差不超過2秒的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某地區(qū)鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
時(shí)間代號x | 1 | 2 | 3 | 4 | 5 | 6 |
儲(chǔ)蓄存款y(千億元) | 3.5 | 5 | 6 | 7 | 8 | 9.5 |
(1)求關(guān)于x的回歸方程,并預(yù)測該地區(qū)2019年的人民幣儲(chǔ)蓄存款(用最簡分?jǐn)?shù)作答).
(2)在含有一個(gè)解釋變量的線性模型中,恰好等于相關(guān)系數(shù)r的平方,當(dāng)時(shí),認(rèn)為線性冋歸模型是有效的,請計(jì)算并且評價(jià)模型的擬合效果(計(jì)算結(jié)果精確到0.001).
附:
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com