一個(gè)圓柱形容器的軸截面尺寸如右圖所示,容器內(nèi)有一個(gè)實(shí)心的球,球的直徑恰等于圓柱的高.現(xiàn)用水將該容器注滿,然后取出該球(假設(shè)球的密度大于水且操作過程中水量損失不計(jì)),則球取出后,容器中水面的高度為    cm.
【答案】分析:由題意求出球的體積,求出圓柱的體積,即可得到水的體積,然后求出球取出后,容器中水面的高度.
解答:解:由題意可知球的體積為:=(cm2).圓柱的體積為:102π×10=1000π  cm2
所以容器中水的體積為:1000π-=  (cm2),
所以球取出后,容器中水面的高度為h,
解得h=cm.
故答案為:
點(diǎn)評(píng):本題考查球的體積,圓柱的體積的求法,考查空間想象能力,計(jì)算能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•普陀區(qū)一模)一個(gè)圓柱形容器的軸截面尺寸如右圖所示,容器內(nèi)有一個(gè)實(shí)心的球,球的直徑恰等于圓柱的高.現(xiàn)用水將該容器注滿,然后取出該球(假設(shè)球的密度大于水且操作過程中水量損失不計(jì)),則球取出后,容器中水面的高度為
25
3
25
3
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京市高三(上)期中數(shù)學(xué)模擬試卷(二)(解析版) 題型:填空題

一個(gè)圓柱形容器的軸截面尺寸如右圖所示,容器內(nèi)有一個(gè)實(shí)心的球,球的直徑恰等于圓柱的高.現(xiàn)用水將該容器注滿,然后取出該球(假設(shè)球的密度大于水且操作過程中水量損失不計(jì)),則球取出后,容器中水面的高度為    cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年高三強(qiáng)化班數(shù)學(xué)寒假作業(yè)(立體幾何)(解析版) 題型:填空題

一個(gè)圓柱形容器的軸截面尺寸如右圖所示,容器內(nèi)有一個(gè)實(shí)心的球,球的直徑恰等于圓柱的高.現(xiàn)用水將該容器注滿,然后取出該球(假設(shè)球的密度大于水且操作過程中水量損失不計(jì)),則球取出后,容器中水面的高度為    cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)建平中學(xué)高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

一個(gè)圓柱形容器的軸截面尺寸如右圖所示,容器內(nèi)有一個(gè)實(shí)心的球,球的直徑恰等于圓柱的高.現(xiàn)用水將該容器注滿,然后取出該球(假設(shè)球的密度大于水且操作過程中水量損失不計(jì)),則球取出后,容器中水面的高度為    cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案