.如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)a,b,c都在函數(shù)f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長(zhǎng),則稱f(x)為“保三角形函數(shù)”.
(1)判斷下列函數(shù)是不是“保三角形函數(shù)”,并證明你的結(jié)論:
① f(x)= ; ② g(x)=sinx (x∈(0,π)).
(2)若函數(shù)h(x)=lnx (x∈[M,+∞))是保三角形函數(shù),求M的最小值.
(1)f(x)= 是保三角形函數(shù),g(x)=sinx (x∈(0,π))不是保三角形函數(shù).
(2)M的最小值為2.
① f(x)= 是保三角形函數(shù).
對(duì)任意一個(gè)三角形的三邊長(zhǎng)a,b,c,則a+b>c,b+c>a,c+a>b,
f(a)= ,f(b)= ,f(c)= .
因?yàn)?+)2=a+2+b>c+2>()2,所以+>.
同理可以證明:+>,+>.
所以f(a)、f(b)、f(c)也是某個(gè)三角形的三邊長(zhǎng),故 f(x)= 是保三角形函數(shù).
②g(x)=sinx (x∈(0,π))不是保三角形函數(shù). 取,顯然這三個(gè)數(shù)能作為一個(gè)
三角形的三條邊的長(zhǎng). 而sin=1,sin=,不能作為一個(gè)三角形的三邊長(zhǎng).
所以g(x)=sinx (x∈(0,π))不是保三角形函數(shù).
(i)首先證明當(dāng)M≥2時(shí),函數(shù)h(x)=lnx (x∈[M,+∞))是保三角形函數(shù).
對(duì)任意一個(gè)三角形三邊長(zhǎng)a,b,c∈[M,+∞),且a+b>c,b+c>a,c+a>b,
則h(a)=lna,h(b)=lnb,h(c)=lnc.
因?yàn)?i>a≥2,b≥2,a+b>c,所以(a-1)(b-1)≥1,所以ab≥a+b>c,所以lnab>lnc,
即lna+lnb>lnc.
同理可證明lnb+lnc>lna,lnc+lna>lnb.
所以lna,lnb,lnc是一個(gè)三角形的三邊長(zhǎng).
故函數(shù)h(x)=lnx (x∈[M,+∞),M≥2),是保三角形函數(shù).
(ii)其次證明當(dāng)0<M<2時(shí),h(x)=lnx (x∈[M,+∞))不是保三角形函數(shù).
當(dāng)0<M<2時(shí),取三個(gè)數(shù)M,M,M2∈[M,+∞),
因?yàn)?<M<2,所以M+M=2M>M2,所以M,M,M2是某個(gè)三角形的三條邊長(zhǎng),
而lnM+lnM=2lnM=lnM2,所以lnM,lnM,lnM2不能為某個(gè)三角形的三邊長(zhǎng),
所以h(x)=lnx 不是保三角形函數(shù).
所以,當(dāng)M<2時(shí),h(x)=lnx (x∈[M,+∞))不是保三角形函數(shù).
綜上所述:M的最小值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x |
x+y |
2 |
x-y |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
4 |
π |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x |
5π |
6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com