【題目】已知函數(shù) f(x)=,x∈R,其中 a>0.
(Ⅰ)求函數(shù) f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù) f(x)(x∈(-2,0))的圖象與直線 y=a 有兩個不同交點,求 a 的取值范圍.
【答案】(1)函數(shù) f(x)的單調(diào)遞增區(qū)間是(-∞,-1),(a,+∞);單調(diào)遞減區(qū)間是(-1,a).
(2)(0, ).
【解析】
分析:(1)先求函數(shù)的導函數(shù),找出導函數(shù)的零點,把定義域由零點分成幾個區(qū)間判斷導函數(shù)在各區(qū)間內(nèi)的符號,從而得到原函數(shù)在個區(qū)間內(nèi)的單調(diào)性;(2)根據(jù)(1)中求出的單調(diào)區(qū)間,說明函數(shù)在區(qū)間(-2,-1)內(nèi)單調(diào)遞增,在區(qū)間(-1,0)內(nèi)單調(diào)遞減,結(jié)合函數(shù)零點和方程根的轉(zhuǎn)化列式可求a的范圍.
詳解:
(Ⅰ)f′(x)=+(1-a)x-a=(x+1)(x-a).
由 f′(x)=0,得=-1,=a>0.
當 x 變化時,f′(x),f(x)的變化情況如下表:
x | (-∞,-1) | -1 | (-1,a) | a | (a,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 極大值 | 極小值 |
故函數(shù) f(x)的單調(diào)遞增區(qū)間是(-∞,-1),(a,+∞);
單調(diào)遞減區(qū)間是(-1,a).
(Ⅱ) 令 g(x)=f(x)-a,x∈(-2,0),
則函數(shù) g(x)在區(qū)間(-2,0)內(nèi)有兩個不同的零點,
由(Ⅰ)知 g (x)在區(qū)間(-2,-1)內(nèi)單調(diào)遞增,在區(qū)間(-1,0)內(nèi)單調(diào)遞減,
從而
解得 0<a<. 所以 a 的取值范圍是(0, )
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的是 ( )
①相關(guān)系數(shù)用來衡量兩個變量之間線性關(guān)系的強弱, 越接近于,相關(guān)性越弱;
②回歸直線一定經(jīng)過樣本點的中心;
③隨機誤差滿足,其方差的大小用來衡量預(yù)報的精確度;
④相關(guān)指數(shù)用來刻畫回歸的效果, 越小,說明模型的擬合效果越好.
A. ①② B. ③④ C. ①④ D. ②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】min(a,b)表示a,b中的最小值,執(zhí)行如圖所示的程序框圖,若輸入的a,b值分別為4,10,則輸出的min(a,b)值是( )
A.0
B.1
C.2
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(點在點的左側(cè)).過點任作一條直線與圓:相交于兩點A,B.問:是否存在實數(shù)a,使得=?若存在,求出實數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項和為Sn , 且滿足2Sn=2n+1+λ(λ∈R). (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn= ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (φ為參數(shù)),以原點為極點,x軸的非負半軸為極軸建立極坐標系. (Ⅰ)求曲線C的極坐標方程;
(Ⅱ)已知傾斜角為135°且過點P(1,2)的直線l與曲線C交于M,N兩點,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】規(guī)定:投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀.根據(jù)以往經(jīng)驗?zāi)尺x手投擲一次命中8環(huán)以上的概率為 .現(xiàn)采用計算機做模擬實驗來估計該選手獲得優(yōu)秀的概率:用計算機產(chǎn)生0到9之間的隨機整數(shù),用0,1表示該次投擲未在 8 環(huán)以上,用2,3,4,5,6,7,8,9表示該次投擲在 8 環(huán)以上,經(jīng)隨機模擬試驗產(chǎn)生了如下 20 組隨機數(shù): 907 966 191 925 271 932 812 458 569 683
031 257 393 527 556 488 730 113 537 989
據(jù)此估計,該選手投擲 1 輪,可以拿到優(yōu)秀的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南宋數(shù)學家秦九韶(約公元1202﹣1261年)給出了求n(n∈N*)次多項式anxn+an﹣1xn﹣1+…+a1x+a0 , 當x=x0時的值的一種簡捷算法.該算法被后人命名為“秦九韶算法”,例如,可將3次多項式改寫為a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后進行求值.運行如圖所示的程序框圖,能求得多項式( )的值.
A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在△ABC中,a,b,c分別為∠A,∠B,∠C的對邊,且滿足(2c﹣b)tanB=btanA.
(1)求A的大。
(2)求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com