精英家教網 > 高中數學 > 題目詳情

(本題滿分12分)

已知動圓過點,且與相內切.

   (1)求動圓的圓心的軌跡方程;

   (2)設直線(其中與(1)中所求軌跡交于不同兩點,D,與雙曲線交于不同兩點,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

解:(1)圓, 圓心的坐標為,半徑

,∴點在圓內.       

設動圓的半徑為,圓心為,依題意得,且,

.                                             

∴圓心的軌跡是中心在原點,以兩點為焦點,長軸長為的橢圓,設其方程為

,  則.∴

∴所求動圓的圓心的軌跡方程為.…………………………………4分

 (2)由 消去化簡整理得:

,,則……………………………………6分

. ①

 消去化簡整理得:

,則,

. ② ……………………………………8分

,∴,即

.∴

解得……… 10分                                                                  

時,由①、②得 

Z,,∴的值為 ,;

,由①、②得 

Z,,∴

∴滿足條件的直線共有9條.………………………………………………12分


解析:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

( 本題滿分12分 )
已知函數f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分12分)已知數列是首項為,公比的等比數列,,

,數列.

(1)求數列的通項公式;(2)求數列的前n項和Sn.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年上海市金山區(qū)高三上學期期末考試數學試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B;

(2) 若,求實數a的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年安徽省高三10月月考理科數學試卷(解析版) 題型:解答題

(本題滿分12分)

設函數為常數),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年重慶市高三第二次月考文科數學 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習冊答案