已知數(shù)列的各項(xiàng)都是正數(shù),且對任意都有,其中為數(shù)列的前項(xiàng)和.
(1)求、;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),對任意的,都有恒成立,求實(shí)數(shù)的取值范圍.
(1),;(2);(3).
解析試題分析:(1)分別令和代入題干中的等式求出和的值;(2)利用定義法進(jìn)行求解,在原式中利用替換得到,將此等式與原式作差得到
,再次利用定義法得到數(shù)列為等差數(shù)列,最后利用等差數(shù)列的通項(xiàng)公式進(jìn)行求解;(3)利用化簡得到,對進(jìn)行分奇偶討論求出的取值范圍.
試題解析:(1)令,則,即,所以或或,
又因?yàn)閿?shù)列的各項(xiàng)都是正數(shù),所以,
令,則,即,解得或或,
又因?yàn)閿?shù)列的各項(xiàng)都是正數(shù),所以,
(2), ①
, ②
由①②得,
化簡得到, ③
,④
由③④得,
化簡得到,即,
當(dāng)時(shí),,所以,
所以數(shù)列是一個(gè)以為首項(xiàng),為公差的等差數(shù)列,
;
(3),
因?yàn)閷θ我獾?img src="http://thumb.zyjl.cn/pic5/tikupic/79/8/caray.png" style="vertical-align:middle;" />,都有恒成立,即有,
化簡得,
當(dāng)為奇數(shù)時(shí),恒成立,,即,
當(dāng)為偶數(shù)時(shí),恒成立,,即,
,故實(shí)數(shù)的取值范圍是.
考點(diǎn):1.定義法求數(shù)列的通項(xiàng)公式;2.數(shù)列不等式恒成立;3.分類討論
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一。書中有一道這樣的題目:把100個(gè)面包分給五人,使每人成等差數(shù)列,且使最大的三份之和的是較小的兩份之和,則最小1份的大小是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和和通項(xiàng)滿足(,是大于0的常數(shù),且),數(shù)列是公比不為的等比數(shù)列,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是否存在實(shí)數(shù),使數(shù)列是等比數(shù)列?若存在,求出所有可能的實(shí)數(shù)的值,若不存在說明理由;
(3)數(shù)列是否能為等比數(shù)列?若能,請給出一個(gè)符合的條件的和的組合,若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)項(xiàng)數(shù)均為()的數(shù)列、、前項(xiàng)的和分別為、、.已知集合=.
(1)已知,求數(shù)列的通項(xiàng)公式;
(2)若,試研究和時(shí)是否存在符合條件的數(shù)列對(,),并說明理由;
(3)若,對于固定的,求證:符合條件的數(shù)列對(,)有偶數(shù)對.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對于數(shù)列,從中選取若干項(xiàng),不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項(xiàng),第三項(xiàng)和第五項(xiàng).
(1) 若成等比數(shù)列,求的值;
(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請給出數(shù)列的通項(xiàng)公式并證明;若不存在,說明理由;
(3) 他在研究過程中猜想了一個(gè)命題:“對于首項(xiàng)為正整數(shù),公比為正整數(shù)()的無窮等比數(shù) 列,總可以找到一個(gè)子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項(xiàng),由與的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題10分,計(jì)入總分)
已知數(shù)列滿足:
⑴求;
⑵當(dāng)時(shí),求與的關(guān)系式,并求數(shù)列中偶數(shù)項(xiàng)的通項(xiàng)公式;
⑶求數(shù)列前100項(xiàng)中所有奇數(shù)項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
己知等差數(shù)列的首項(xiàng)為,公差為,其前項(xiàng)和為,若直線與圓的兩個(gè)交點(diǎn)關(guān)于直線對稱,則( )
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com