【題目】疫情期間,為了更好地了解學(xué)生線上學(xué)習(xí)的情況,某興趣小組在網(wǎng)上隨機抽取了100名學(xué)生對其線上學(xué)習(xí)滿意情況進行調(diào)查,其中男女比例為23,其中男生有24人滿意,女生有12人不滿意.

1)完成列聯(lián)表,并回答是否有95%把握認(rèn)為“線上學(xué)習(xí)是否滿意與性別有關(guān)”

滿意

不滿意

合計

男生

女生

合計

2)從對線上學(xué)習(xí)滿意的學(xué)生中,利用分層抽樣抽取6名學(xué)生,再在6名學(xué)生中抽取3名,記抽到的女生人數(shù)為,求的分布列和數(shù)學(xué)期望.

參考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

.072

2.706

3.842

5.024

6.635

7.879

10.828

【答案】1列聯(lián)表見解析,有95%把握認(rèn)為“線上學(xué)習(xí)是否滿意與性別有關(guān)”(2)分布列見解析,數(shù)學(xué)期望為2

【解析】

1)根據(jù)男女比例,可得男生、女生人數(shù),然后簡單計算可得表中數(shù)據(jù),最后根據(jù)公式計算,可得結(jié)果.

2)計算出學(xué)習(xí)滿意的學(xué)生中男生、女生抽出的人數(shù),然后寫出所有的可能取值并結(jié)合組合知識得出相應(yīng)的概率,并列出分布列最后根據(jù)期望公式可得結(jié)果.

1)由男女比例為23,所以男生40人,女生60人

所以

滿意

不滿意

合計

男生

24

16

40

女生

48

12

60

合計

72

28

100

所以有95%把握認(rèn)為“線上學(xué)習(xí)是否滿意與性別有關(guān)”

(2)對線上學(xué)習(xí)滿意的學(xué)生男生抽取了:

女生抽取了:

所以所有的可能取值為:12,3

所以的分布列為

1

2

3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線的焦點,以為圓心作半徑為的圓,圓軸的負(fù)半軸交于點,與拋物線分別交于點.

1)若為直角三角形,求半徑的值;

2)判斷直線與拋物線的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點(

A.向左平移個單位長度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變

B.向左平移個單位長度,縱坐標(biāo)伸長到原來的3倍橫坐標(biāo)不變

C.向右平移個單位長度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變

D.向右平移個單位長度,縱坐標(biāo)伸長到原來的3倍,橫坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,四邊形是邊長為2的菱形,為正三角形,與平面所成的角為,平面平面.

1)求證:;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩位同學(xué)玩游戲,對于給定的實數(shù),按下列方法操作一次產(chǎn)生一個新的實數(shù):由甲、乙同時各擲一枚均勻的硬幣,如果出現(xiàn)兩個正面朝上或兩個反面朝上,則把乘以2后再減去6;如果出現(xiàn)一個正面朝上,一個反面朝上,則把除以2后再加上6,這樣就可得到一個新的實數(shù),對實數(shù)仍按上述方法進行一次操作,又得到一個新的實數(shù),當(dāng)時,甲獲勝,否則乙獲勝,若甲勝的概率為,則的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長是焦距的2倍,且過點

1)求橢圓C的方程;

2)設(shè)為橢圓C上的動點,F為橢圓C的右焦點,A、B分別為橢圓C的左、右頂點,點滿足

①證明:為定值;

②設(shè)Q是直線上的動點,直線AQ、BQ分別另交橢圓CMN兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)),曲線C1的方程為ρ(ρ-4sin θ)=12,定點A(6,0),點P是曲線C1上的動點,QAP的中點.

(1)求點Q的軌跡C2的直角坐標(biāo)方程;

(2)直線l與直線C2交于AB兩點,若|AB|≥2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,河南省鄭州市的房價依舊是鄭州市民關(guān)心的話題.總體來說,二手房房價有所下降,相比二手房而言,新房市場依然強勁,價格持續(xù)升高.已知銷售人員主要靠售房提成領(lǐng)取工資.現(xiàn)統(tǒng)計鄭州市某新房銷售人員一年的工資情況的結(jié)果如圖所示,若近幾年來該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說法正確的是(

A.月工資增長率最高的為8月份

B.該銷售人員一年有6個月的工資超過4000

C.由此圖可以估計,該銷售人員20206,7,8月的平均工資將會超過5000

D.該銷售人員這一年中的最低月工資為1900

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,cdR,矩陣A 的逆矩陣A1.若曲線C在矩陣A對應(yīng)的變換作用下得到直線y2x1,求曲線C的方程.

查看答案和解析>>

同步練習(xí)冊答案