12.用隨機事件發(fā)生的頻率去估算這個事件發(fā)生的概率.下列結(jié)論正確的是( 。
A.事件A發(fā)生的概率P(A)是0<P(A)<1
B.事件A發(fā)生的概率P(A)=0.999,則事件A是必然事件
C.用某種藥物對患有胃潰瘍的500名病人治療,結(jié)果有380人有明顯的療效,現(xiàn)有胃潰瘍的病人服用此藥,則估計有明顯療效的可能性為76%
D.某獎券中獎率為0.5,則某人購買此券10張,一定有5張中獎

分析 根據(jù)概率的定義分別判斷即可.

解答 解:對于A,P(A)可以是0或1,故A錯誤;
對于B,事件A是隨機事件,故B錯誤;
對于C,根據(jù)概率的定義判斷正確;
對于D,是隨機事件,D錯誤;
故選:C.

點評 本題考查概率的概念,解題時要熟練掌握概率的意義,本題是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.三棱錐P-ABC中,PA、PB、PC互相垂直,PA=PB=1,M是線段BC上一動點,若直線AM與平面PBC所成角的正切的最大值是$\frac{\sqrt{6}}{2}$,則三棱錐P-ABC的外接球的表面積是( 。
A.B.C.D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了考察某種中成藥預(yù)防流感的效果,抽樣調(diào)查40人,得到如下數(shù)據(jù)
患流感未患流感
服用藥218
未服用藥812
根據(jù)表中數(shù)據(jù),通過計算統(tǒng)計量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,并參考以下臨界數(shù)據(jù):
P(K2>k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.845.0246.6357.87910.828
若由此認為“該藥物有效”,則該結(jié)論出錯的概率不超過( 。
A.0.05B.0.025C.0.01D.0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)點有頂點A,O為坐標原點,以A為圓心與雙曲線C的一條漸近線交于兩點P,Q,若∠PAQ=60°且$\overrightarrow{OQ}$=2$\overrightarrow{OP}$,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{39}}{6}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{7}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知實數(shù)m,n滿足logam>logan(a>1),則下列關(guān)系式不恒成立的是( 。
A.|m|>|n|B.($\frac{1}{2}$)m<($\frac{1}{2}$)nC.sinm>sinnD.m${\;}^{\frac{1}{2}}$>n${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.直線$\left\{\begin{array}{l}x=tsin20°+3\\ y=-tcos20°\end{array}\right.$(t為參數(shù))的傾斜角為( 。
A.20°B.70°C.110°D.160°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將甲、乙等5位同學(xué)分別保送到北京大學(xué)、上海交通大學(xué)、浙江大學(xué)三所大學(xué)就讀,則每所大學(xué)至少保送一人的不同保送方法有( 。
A.240種B.180種C.150種D.540種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)$\int_0^{\frac{π}{2}}{sinxdx}=K$,則$\int_0^{\frac{5}{2}π}{|sinx|dx}$=( 。
A.KB.2.5KC.4KD.5K

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=$x+\frac{a}{x+1}$,x∈[0,+∞).
(1)當(dāng)a=2時,求函數(shù)f(x)的最小值;
(2)當(dāng)0<a<1時,求函數(shù)f(x)的最小值.
(3)當(dāng)a=2時,且(x+1)f(x)-bx+b>0在[1,+∞)恒成立,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案