(21)已知點P到兩個定點M(-1,0)、N(1,0)距離的比為,點N到直線PM的距離為1.求直線PN的方程.

(21)本小題主要考查直線方程、點到直線的距離等基礎知識,以及運算能力.

解:設點P的坐標為(xy),由題設有

=·.

整理得x2+y2-6x+1=0.                     ① 

因為點NPM的距離為1,|MN|=2,

所以∠PMN=30°,直線PM的斜率為±,

直線PM的方程為yx+1).                    ② 

將②式代入①式整理得x2-4x+1=0.

解得x=2+x=2-.

代入②式得點P的坐標為(2+,1+)或(2-,-1+);(2+,-1-

或(2-,1-).       

直線PN的方程為y=x-1或y=-x+1.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C1的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,離心率為
3
2
,兩個焦點分別為F1和F2,橢圓C1上一點到F1和F2的距離之和為12,橢圓C2的方程為
x2
(a-2)2
+
y2
b2-1
=1
,圓C3:x2+y2+2kx-4y-21=0(k∈R)的圓心為點Ak
(I)求橢圓C1的方程;
(II)求△AkF1F2的面積;
(III)若點P為橢圓C2上的動點,點M為過點P且垂直于x軸的直線上的點,
|OP|
|OM|
=e
(e為橢圓C2的離心率),求點M的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)如圖a所示,在平面直角坐標系中,O為坐標原點,M為動點,且,= .過點M作MM1⊥y軸于M1,過N作NN1⊥x軸于點N1.又動點T滿足=+ ,其軌跡為曲線C.

(1)求曲線C的方程;

(2)已知點A(5,0)、B(1,0),過點A作直線交曲線C于兩個不同的點P、Q,△BPQ的面積S是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.

(文)如圖b所示,線段AB過x軸正半軸上一點M(m,0)(m>0),端點A,B到x軸距離之積為2m,以x軸為對稱軸、過A,O,B三點作拋物線.

(1)求拋物線方程;

(2)若tan∠AOB=-1,求m的取值范圍.

第21題圖

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1方程為=1(ab>0),離心率為,兩個焦點分別為F1F2,橢圓C1上一點到F1F2的距離之和為12.橢圓C2的方程為=1.圓Ckx2y2+2kx-4y21=0(k∈R)的圓心為點Ak.

(1)求橢圓C1的方程;

(2)求△AkF1F2的面積;

(3)若點P為橢圓C2上的動點,點M為過點P且垂直于x軸的直線上的點,e(e為橢圓C2的離心率),求點M的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年浙江省湖州市菱湖中學高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C1的方程為,離心率為,兩個焦點分別為F1和F2,橢圓C1上一點到F1和F2的距離之和為12,橢圓C2的方程為,圓C3:x2+y2+2kx-4y-21=0(k∈R)的圓心為點Ak
(I)求橢圓C1的方程;
(II)求△AkF1F2的面積;
(III)若點P為橢圓C2上的動點,點M為過點P且垂直于x軸的直線上的點,(e為橢圓C2的離心率),求點M的軌跡.

查看答案和解析>>

同步練習冊答案