【題目】已知函數(shù)f(x)=|x+1|.
(Ⅰ) 解不等式f(x+8)≥10﹣f(x);
(Ⅱ) 若|x|>1,|y|<1,求證:f(y)<|x|f( ).

【答案】(Ⅰ)解:原不等式即為|x+9|≥10﹣|x+1|. 當(dāng)x<﹣9時,則﹣x﹣9≥10+x+1,解得x≤﹣10;
當(dāng)﹣9≤x≤﹣1時,則x+9≥10+x+1,此時不成立;
當(dāng)x>﹣1時,則x+9≥10﹣x﹣1,解得x≥0.
所以原不等式的解集為{x|x≤﹣10或x≥0}.
(Ⅱ)證明:要證 ,即 ,只需證明
則有 = =
= =
因為|x|2>1,|y|2<1,則 = ,
所以 ,原不等式得證
【解析】(Ⅰ) 分類討論,解不等式f(x+8)≥10﹣f(x);(Ⅱ)利用分析法證明不等式.
【考點精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),g(x)=ex
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a≠0時,過原點分別作曲線y=f(x)與y=g(x)的切線l1 , l2 , 已知兩切線的斜率互為倒數(shù),證明: <a<
(3)設(shè)h(x)=f(x+1)+g(x),當(dāng)x≥0,h(x)≥1時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 中, 、 均為等邊三角形, .

(Ⅰ)求證: 平面 ;
(Ⅱ)求直線 與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率=利潤÷保費收入)的頻率分布直方圖如圖所示:

(Ⅰ)試估計平均收益率;

(Ⅱ)根據(jù)經(jīng)驗,若每份保單的保費在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量(萬份)與(元)有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組的對應(yīng)數(shù)據(jù):

據(jù)此計算出的回歸方程為.

(i)求參數(shù)的估計值;

(ii)若把回歸方程當(dāng)作的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計此產(chǎn)品的收益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大收益,并求出該最大收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游愛好者計劃從3個亞洲國家 和3個歐洲國家 中選擇2個國家去旅游.
(Ⅰ)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(Ⅱ)若從亞洲國家和歐洲國家中各任選1個,求這2個國家包括 但不包括 的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】潮州統(tǒng)計局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分

布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在)。

(1)求居民月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這人中分層抽樣方法抽出人作進一步分析,則月收入在的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)從高三男生中隨機抽取100名學(xué)生,將他們的身高數(shù)據(jù)進行整理,得到下側(cè)的頻率分布表.

組號

分組

頻率

1

[160,165)

0.05

2

0.35

3

0.3

4

0.2

5

0.1

合計

1.00

Ⅰ)為了能對學(xué)生的體能做進一步了解,該校決定在第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進行體能測試,問第3,4,5組每組各應(yīng)抽取多少名學(xué)生進行測試;

Ⅱ)在(Ⅰ)的前提下,學(xué)校決定在6名學(xué)生中隨機抽取2名學(xué)生進行引體向上測試,求第3組中至少有一名學(xué)生被抽中的概率;

試估計該中學(xué)高三年級男生身高的中位數(shù)位于第幾組中,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,且 .
(1)求角B的大。
(2)若b= ,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點為圓心的圓過點,線段的垂直平分線交圓于點、,

(1)求直線的方程; (2)求圓的方程。

(3)設(shè)點在圓上,試探究使的面積為 8 的點共有幾個?證明你的結(jié)論

查看答案和解析>>

同步練習(xí)冊答案