【題目】函數(shù)f(x)=(m2m-1)·是冪函數(shù),對任意x1,x2∈(0,+∞)且x1x2,滿足,若a,b∈R且ab>0,ab<0,則f(a)+f(b)的值(  )

A. 恒大于0 B. 恒小于0

C. 等于0 D. 無法判斷

【答案】A

【解析】函數(shù)f(x)(m2m1) 是冪函數(shù),所以m2m11,解得m2m=-1.

當(dāng)m=2時,f(x)=x2 015;

當(dāng)m=-1時,f(x)=x-4.

又因為對任意x1,x2(0,+∞)x1x2,滿足,所以函數(shù)f(x)是增函數(shù),

所以函數(shù)的解析式為f(x)=x2 015,

函數(shù)f(x)=x2 015是奇函數(shù)且是增函數(shù),

a,b∈Rab>0,ab<0,則a,b異號且正數(shù)的絕對值較大,所以f(a)+f(b)恒大于0,故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在上的一點的正北方向的處建設(shè)一倉庫,設(shè),并在公路北側(cè)建造邊長為的正方形無頂中轉(zhuǎn)站(其中上),現(xiàn)從倉庫和中轉(zhuǎn)站分別修兩條道路,已知,且

(1)求關(guān)于的函數(shù)解析式,并求出定義域;

(2)如果中轉(zhuǎn)站四堵圍墻造價為10萬元,兩條道路造價為30萬元,問:取何值時,該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某幾何體挖去一部分后得到的三視圖,其中主視圖和左視圖相同都是一個等腰梯形及它的內(nèi)切圓,俯視圖中有兩個邊長分別為2和8的正方形且圖中的圓與主視圖圓大小相等并且圓心為兩個正方形的中心.問該幾何體的體積是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近于圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的(四舍五入精確到小數(shù)點后兩位)的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin75°=0.1305)
A.3.10
B.3.11
C.3.12
D.3.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=mln(x+1),g(x)= (x>﹣1). (Ⅰ)討論函數(shù)F(x)=f(x)﹣g(x)在(﹣1,+∞)上的單調(diào)性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的最小值是,且,,求的值;

(2)若,且在區(qū)間上恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的反函數(shù)為,則函數(shù)的圖象可能是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

需要

40

30

不需要

160

270

(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例。

(2)能否在犯錯誤的概率不超過百分之一的前提下認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某玩具所需成本費用為P,P=1 000+5xx2,而每套售出的價格為Q,其中Q(x)=a (a,bR),

(1)問:玩具廠生產(chǎn)多少套時使得每套所需成本費用最少?

(2)若生產(chǎn)出的玩具能全部售出,且當(dāng)產(chǎn)量為150套時利潤最大,此時每套價格為30a,b的值.(利潤=銷售收入-成本).

查看答案和解析>>

同步練習(xí)冊答案