【題目】已知函數(shù)

(1)討論的極值點(diǎn)的個(gè)數(shù);

(2)若有兩個(gè)極值點(diǎn)x1,x2(x1<x2),且的最小值

【答案】(1)見解析;(2)

【解析】

(1)求導(dǎo)數(shù)得,當(dāng)通過討論判別式與0的關(guān)系,得函數(shù)單調(diào)性,由單調(diào)性即可得函數(shù)的極值問題;(2)有兩個(gè)極值點(diǎn)可知為方程的兩個(gè)根,用表示出為,令,構(gòu)造函數(shù)求導(dǎo)判單調(diào)性即可得到最值.

(1)法一:由題意得

,即。.

①當(dāng),即時(shí),對(duì)任意恒成立,即對(duì)任意恒成立,此時(shí)沒有極值點(diǎn)。

②當(dāng),即時(shí)。

,設(shè)方程的兩個(gè)不同實(shí)根為,不妨設(shè)

,

當(dāng)時(shí),;

當(dāng)時(shí),

是函數(shù)的兩個(gè)極值點(diǎn)。

,設(shè)方程的兩個(gè)不同實(shí)根為,

,故。

當(dāng)時(shí),,故函數(shù)沒有極值點(diǎn)。

當(dāng)時(shí),函數(shù)沒有極值點(diǎn)。

法二:,

。.

①當(dāng),即時(shí),對(duì)任意恒成立,上單調(diào)遞增,沒有極值點(diǎn)。.

②當(dāng),即時(shí),有兩個(gè)不等正實(shí)數(shù)解,設(shè)為,

。

不妨設(shè),則當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以分別為的極大值點(diǎn)和極小值點(diǎn)。

有兩個(gè)極值點(diǎn)。.

綜上所述,當(dāng)時(shí),沒有極值點(diǎn),

當(dāng)時(shí),有兩個(gè)極值點(diǎn)。

(2)由題意知,,

則易知為方程的兩個(gè)根,且,

所以

,由,

,

,

上單調(diào)遞減。

從而,即,

,結(jié)合,解得,

從而的最小值為

的最小值為。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查一款電視機(jī)的使用時(shí)間,研究人員對(duì)該款電視機(jī)進(jìn)行了相應(yīng)的測試,將得到的數(shù)據(jù)統(tǒng)計(jì)如下圖所示:

并對(duì)不同年齡層的市民對(duì)這款電視機(jī)的購買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:

愿意購買這款電視機(jī)

不愿意購買這款電視機(jī)

總計(jì)

40歲以上

800

1000

40歲以下

600

總計(jì)

1200

(1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款電視機(jī)的平均使用時(shí)間;

(2)根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認(rèn)為“愿意購買該款電視機(jī)”與“市民的年齡”有關(guān);

(3)若按照電視機(jī)的使用時(shí)間進(jìn)行分層抽樣,從使用時(shí)間在的電視機(jī)中抽取5臺(tái),再從這5臺(tái)中隨機(jī)抽取2臺(tái)進(jìn)行配件檢測,求被抽取的2臺(tái)電視機(jī)的使用時(shí)間都在內(nèi)的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,, 是斜邊的中點(diǎn),將沿直線翻折,若在翻折過程中存在某個(gè)位置,使得,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】獨(dú)立性檢驗(yàn)中,假設(shè):運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)沒有關(guān)系.在上述假設(shè)成立的情況下,計(jì)算得的觀測值.下列結(jié)論正確的是( )

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

A. 在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)有關(guān)

B. 在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)無關(guān)

C. 在犯錯(cuò)誤的概率不超過0.005的前提下,認(rèn)為運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)有關(guān)

D. 在犯錯(cuò)誤的概率不超過0.005的前提下,認(rèn)為運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】流行性感冒(簡稱流感)是流感病毒引起的急性呼吸道感染,是一種傳染性強(qiáng)、傳播速度快的疾。渲饕ㄟ^空氣中的飛沫、人與人之間的接觸或與被污染物品的接觸傳播.流感每年在世界各地均有傳播,在我國北方通常呈冬春季流行,南方有冬春季和夏季兩個(gè)流行高峰.兒童相對(duì)免疫力低,在幼兒園、學(xué)校等人員密集的地方更容易被傳染.某幼兒園將去年春期該園患流感小朋友按照年齡與人數(shù)統(tǒng)計(jì),得到如下數(shù)據(jù):

年齡(

患病人數(shù)(

1)求關(guān)于的線性回歸方程;

2)計(jì)算變量、的相關(guān)系數(shù)(計(jì)算結(jié)果精確到),并回答是否可以認(rèn)為該幼兒園去年春期患流感人數(shù)與年齡負(fù)相關(guān)很強(qiáng)?(若,則相關(guān)性很強(qiáng);若,則、相關(guān)性一般;若,則相關(guān)性較弱.)

參考數(shù)據(jù):

參考公式:,

相關(guān)系數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為.

(1)求橢圓的方程;

(2)設(shè)過點(diǎn)的直線與橢圓交于、兩點(diǎn),是橢圓的上焦點(diǎn).問:是否存在直線,使得?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A,B,C,D為平面內(nèi)的四點(diǎn),且A(1,3),B(2,–2),C(4,1).

(1)若,求D點(diǎn)的坐標(biāo);

(2)設(shè)向量,,若k+3平行,求實(shí)數(shù) 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】荷花池中,有一只青蛙在成品字形的三片荷葉上跳來跳去(每次跳躍時(shí),均從一葉跳到另一葉),而且逆時(shí)針方向跳的概率是順時(shí)針方向跳的概率的兩倍,如圖所示.假設(shè)現(xiàn)在青蛙在A葉上,則跳四次之后停在A葉上的概率是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列滿足:存在正整數(shù)T,對(duì)于任意正整數(shù)n都有成立,則稱數(shù)列為周期數(shù)列,周期為T.已知數(shù)列滿足,則下列結(jié)論中錯(cuò)誤的是(

A.,則m可以取3個(gè)不同的值;

B.,則數(shù)列是周期為3的數(shù)列;

C.對(duì)于任意的T≥2,存在,使得是周期為的數(shù)列

D.存在,使得數(shù)列是周期數(shù)列

查看答案和解析>>

同步練習(xí)冊(cè)答案