如圖,攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測(cè)得立柱頂端O的仰角和立柱底部B的俯角均為30°,已知S的身高約為
3
米(將眼睛距地面的距離SA按
3
米處理).
(1)求攝影者到立柱的水平距離AB和立柱的高度OB;
(2)立柱的頂端有一長為2米的彩桿MN,且MN繞其中點(diǎn)O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影者觀察彩桿MN的視角∠MSN(設(shè)為θ)是否存在最大值?若存在,請(qǐng)求出∠MSN取最大值時(shí)cosθ的值;若不存在,請(qǐng)說明理由.
分析:(1)攝影者眼部記為點(diǎn)S,作SC⊥OB于C,則有∠CSB=30°,∠ASB=60°.SA=
3
,在Rt△SAB中,由三角函數(shù)的定義可求AB;再由SC=3,∠CSO=30°,在Rt△SCO中由三角函數(shù)的定義可求OC,進(jìn)而可求OB
(2)以O(shè)為原點(diǎn),以水平方向向右為x軸正方向建立平面直角坐標(biāo)系.設(shè)M(cosα,sinα),α∈[0,2π),則N(-cosα,-sinα),由(Ⅰ)知S(3,-
3
)
.,利用向量的數(shù)量積的坐標(biāo)表示可求cos∠MSN=
SM
SN
|
SM
|•|
SN
|
∈[
11
13
,1]
,結(jié)合余弦函數(shù)的性質(zhì)可求
另解:由題意可得cos∠MOS=-cos∠NOS,結(jié)合余弦定理可得
MO2+SO2-SM2
2MO•SO
=-
NO2+SO2-SN2
2NO•SO
,則有SM2+SN2=26可求cosθ范圍
解答:解:(1)如圖,不妨將攝影者眼部記為點(diǎn)S,作SC⊥OB于C,
依題意∠CSB=30°,∠ASB=60°.
SA=
3
,故在Rt△SAB中,可求得BA=
SA
tan30°
=3
,
即攝影者到立柱的水平距離為3米.…(3分)
由SC=3,∠CSO=30°,在Rt△SCO中OC=SC•tan30°=
3
,
BC=SA=
3
,故OB=2
3
,即立柱的高度為2
3
米.…(6分)
(2)如圖,以O(shè)為原點(diǎn),以水平方向向右為x軸正方向建立平面直角坐
標(biāo)系.設(shè)M(cosα,sinα),α∈[0,2π),
則N(-cosα,-sinα),由(Ⅰ)知S(3,-
3
)
.…(8分)
SM
=(cosα-3,sinα+
3
)
,
SN
=(-cosα-3,-sinα+
3
)
,
∵SM
SN
=(cosα-3)(-cosα-3)+(sinα-3)(-sinα-3)=11
(10分)|
SM
|•|
SN
|=
(cosα-3)2+(sinα+
3
)
2
(-cosα-3)2+(-sinα+
3
)
2
=
13-(6cosα-2
3
sinα)
13+(6cosα-2
3
sinα)
=
169-[4
3
cos(α+
π
6
)
2
=
169-48cos2(α+
π
6
)

由α∈[0,2π)知
|SM
|•|
SN
|∈[11,13]
…(12分)
所以cos∠MSN=
SM
SN
|
SM
|•|
SN
|
∈[
11
13
,1]
,易知∠MSN為銳角,
故當(dāng)視角∠MSN取最大值時(shí),cosθ=
11
13
.…(13分)
另解:∵cos∠MOS=-cos∠NOS
MO2+SO2-SM2
2MO•SO
=-
NO2+SO2-SN2
2NO•SO

于是    得SM2+SN2=26
從而cosθ=
SM2+SN2-MN2
2SM•SN
SM2+SN2-MN2
SM2+SN2
=
11
13
點(diǎn)評(píng):本題考查的是解三角形的應(yīng)用,解題的 關(guān)鍵是準(zhǔn)確理解基本概念:仰角俯角問題,熟知銳角三角函數(shù)的定義及正弦、余弦定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,2012年春節(jié),攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測(cè)得立柱頂端O的仰角和立柱底部B的俯角均為30°,已知S的身高約為
3
米(將眼睛距地面的距離按
3
米處理)
(1)求攝影者到立柱的水平距離和立柱的高度;
(2)立柱的頂端有一長2米的彩桿MN繞中點(diǎn)O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).?dāng)z影者有一視角范圍為60°的鏡頭,在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅高三第五次階段性學(xué)科達(dá)標(biāo)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,2012年春節(jié),攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測(cè)得立柱頂端O的仰角和立柱底部B的俯角均為,已知S的身高約為米(將眼睛距地面的距離按米處理)

(1) 求攝影者到立柱的水平距離和立柱的高度;

(2) 立柱的頂端有一長2米的彩桿MN繞中點(diǎn)O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).?dāng)z影者有一視角范圍為的鏡頭,在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省蘇州市木瀆高級(jí)中學(xué)天華學(xué)校高三(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,2012年春節(jié),攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測(cè)得立柱頂端O的仰角和立柱底部B的俯角均為30°,已知S的身高約為米(將眼睛距地面的距離按米處理)
(1)求攝影者到立柱的水平距離和立柱的高度;
(2)立柱的頂端有一長2米的彩桿MN繞中點(diǎn)O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).?dāng)z影者有一視角范圍為60°的鏡頭,在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年湖南省衡陽八中高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

如圖,攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測(cè)得立柱頂端O的仰角和立柱底部B的俯角均為30°,已知S的身高約為米(將眼睛距地面的距離SA按米處理).
(1)求攝影者到立柱的水平距離AB和立柱的高度OB;
(2)立柱的頂端有一長為2米的彩桿MN,且MN繞其中點(diǎn)O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影者觀察彩桿MN的視角∠MSN(設(shè)為θ)是否存在最大值?若存在,請(qǐng)求出∠MSN取最大值時(shí)cosθ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案