【題目】10月1日,某品牌的兩款最新手機(jī)(記為型號,型號)同時投放市場,手機(jī)廠商為了解這兩款手機(jī)的銷售情況,在10月1日當(dāng)天,隨機(jī)調(diào)查了5個手機(jī)店中這兩款手機(jī)的銷量(單位:部),得到下表:
手機(jī)店 |
|
|
|
|
|
型號手機(jī)銷量 | 6 | 6 | 13 | 8 | 11 |
型號手機(jī)銷量 | 12 | 9 | 13 | 6 | 4 |
(Ⅰ)若在10月1日當(dāng)天,從,這兩個手機(jī)店售出的新款手機(jī)中各隨機(jī)抽取1部,求抽取的2部手機(jī)中至少有一部為型號手機(jī)的概率;
(Ⅱ)現(xiàn)從這5個手機(jī)店中任選3個舉行促銷活動,用
(III)經(jīng)測算,型號手機(jī)的銷售成本(百元)與銷量(部)滿足關(guān)系.若表中型號手機(jī)銷量的方差,試給出表中5個手機(jī)店的型號手機(jī)銷售成本的方差的值.(用表示,結(jié)論不要求證明)
【答案】(I);(II)見解析;(Ⅲ)
【解析】
(Ⅰ)將從,這兩個手機(jī)店售出的新款手機(jī)中分別隨機(jī)抽取的1部手機(jī)記為甲和乙,記事件“甲手機(jī)為型號手機(jī)”為,記事件“乙手機(jī)為型號手機(jī)”為,分別求出的值,根據(jù)相互獨(dú)立事件的公式求出,最后利用對立事件概率公式求出抽取的2部手機(jī)中至少有1部為型號手機(jī)的概率;
(Ⅱ)由表可知:型號手機(jī)銷量超過型號手機(jī)銷量的手機(jī)店共有2個,故的所有可能取值為:0,1,2,分別求出的值,寫出隨機(jī)變量的分布列,并根據(jù)數(shù)學(xué)期望計(jì)算公式求出;
(III)根據(jù)方差的性質(zhì)和變量的關(guān)系即可求出方差的值.
(Ⅰ)將從,這兩個手機(jī)店售出的新款手機(jī)中分別隨機(jī)抽取的1部手機(jī)記為甲和乙,
記事件“甲手機(jī)為型號手機(jī)”為,記事件“乙手機(jī)為型號手機(jī)”為,
依題意,有,,且事件、相互獨(dú)立.
設(shè)“抽取的2部手機(jī)中至少有1部為型號手機(jī)”為事件,
則
即抽取的2部手機(jī)中至少有1部為型號手機(jī)的概率為
(Ⅱ)由表可知:型號手機(jī)銷量超過型號手機(jī)銷量的手機(jī)店共有2個,
故的所有可能取值為:0,1,2
且,,
所以隨機(jī)變量的分布列為:
| 0 | 1 | 2 |
|
|
|
|
故
(III).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某企業(yè)中隨機(jī)抽取了5名員工測試他們的藝術(shù)愛好指數(shù)和創(chuàng)新靈感指數(shù),統(tǒng)計(jì)結(jié)果如下表(注:指數(shù)值越高素質(zhì)越優(yōu)秀):
(1)求創(chuàng)新靈感指數(shù)關(guān)于藝術(shù)愛好指數(shù)的線性回歸方程;
(2)企業(yè)為提高員工的藝術(shù)愛好指數(shù),要求員工選擇音樂和繪畫中的一種進(jìn)行培訓(xùn),培訓(xùn)音樂次數(shù)對藝術(shù)愛好指數(shù)的提高量為,培訓(xùn)繪畫次數(shù)對藝術(shù)愛好指數(shù)的提高量為,其中為參加培訓(xùn)的某員工已達(dá)到的藝術(shù)愛好指數(shù).藝術(shù)愛好指數(shù)已達(dá)到3的員工甲選擇參加音樂培訓(xùn),藝術(shù)愛好指數(shù)已達(dá)到4的員工乙選擇參加繪畫培訓(xùn),在他們都培訓(xùn)了20次后,估計(jì)誰的創(chuàng)新靈感指數(shù)更高?
參考公式:回歸方程中,,.
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次惡劣氣候的飛行航程中調(diào)查男女乘客在飛機(jī)上暈機(jī)的情況,共調(diào)查了89位乘客,其中男乘客有24人暈機(jī),31人不暈機(jī);女乘客有8人暈機(jī),26人不暈機(jī)
(1)根據(jù)此材料數(shù)據(jù)完成如下的2×2列聯(lián)表;
暈機(jī) | 不暈機(jī) | 總計(jì) | |
男人 | |||
女人 | |||
總計(jì) |
(2)根據(jù)列聯(lián)表,利用下列公式和數(shù)據(jù)分析,你是否有90%的把握認(rèn)為在本次飛機(jī)飛行中暈機(jī)與性別有關(guān)?
(3)其中8名暈機(jī)的女乘客中有5名是常坐飛機(jī)的乘客,另外3名是不常坐飛機(jī)的,從這8名乘客中任選3名,這3名乘客不都是常坐飛機(jī)的概率是多少?
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某媒體對“男女延遲退休”這一公眾關(guān)注的問題進(jìn)行了民意調(diào)查,下表是在某單位調(diào)查后得到的數(shù)據(jù)(人數(shù)):
贊同 | 反對 | 合計(jì) | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合計(jì) | 16 | 9 | 25 |
(1)能否有90%以上的把握認(rèn)為對這一問題的看法與性別有關(guān)?
(2)進(jìn)一步調(diào)查:
①從贊同“男女延遲退休”的人中選出人進(jìn)行陳述發(fā)言,求事件“男士和女士各至少有人發(fā)言”的概率;
②從反對“男女延遲退休”的人中選出人進(jìn)行座談,設(shè)選出的人中女士人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD是邊長為的正方形,平面PAC⊥底面ABCD,PA=PC=
(1)求證:PB=PD;
(2)若點(diǎn)M,N分別是棱PA,PC的中點(diǎn),平面DMN與棱PB的交點(diǎn)Q,則在線段BC上是否存在一點(diǎn)H,使得DQ⊥PH,若存在,求BH的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】五一勞動節(jié)放假,某商場進(jìn)行一次大型抽獎活動.在一個抽獎盒中放有紅、橙、黃、綠、藍(lán)、紫的小球各2個,分別對應(yīng)1分、2分、3分、4分、5分、6分.從袋中任取3個小球,按3個小球中最大得分的8倍計(jì)分,計(jì)分在20分到35分之間即為中獎.每個小球被取出的可能性都相等,用表示取出的3個小球中最大得分,求:
(1)取出的3個小球顏色互不相同的概率;
(2)隨機(jī)變量的概率分布和數(shù)學(xué)期望;
(3)求某人抽獎一次,中獎的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com